CharlesB
- 6
- 0
Given the following parametric form of the Friedmann Equation for an open, dust-filled (matter-dominated) universe:
a(x)={a_0 \Omega \over 2(1-\Omega)}(cosh(x)-1)
t(x)={\Omega \over 2 H_0 (1- \Omega)^{3/2}}(sinh(x)-x)
I am trying to calculate the Hubble Radius, R=c/H(t) where H(t)=(da/dt)/a and have come up with the following solution:
{da \over dt} = {da \over dx} {dx \over dt}
{da \over dx}={a_0 \Omega \over 2(1-\Omega)}sinh(x)
{dt \over dx}={\Omega \over 2H(1- \Omega)^{3/2}}(cosh(x)-1)
{da \over dt}=Ha_0(1-\Omega)^{1/2}coth({x \over 2})
Integrate to find a:
a=Ha_0(1-\Omega)^{1/2}coth({x \over 2})t
{{da \over dt} \over a}={1 \over t}
Therefore, the Hubble Radius:
R_H={c a \over ({da \over dt})}=ct
I just can't seem to find any references to this solution, so I don't know if it is actually correct.
Can anyone confirm?
a(x)={a_0 \Omega \over 2(1-\Omega)}(cosh(x)-1)
t(x)={\Omega \over 2 H_0 (1- \Omega)^{3/2}}(sinh(x)-x)
I am trying to calculate the Hubble Radius, R=c/H(t) where H(t)=(da/dt)/a and have come up with the following solution:
{da \over dt} = {da \over dx} {dx \over dt}
{da \over dx}={a_0 \Omega \over 2(1-\Omega)}sinh(x)
{dt \over dx}={\Omega \over 2H(1- \Omega)^{3/2}}(cosh(x)-1)
{da \over dt}=Ha_0(1-\Omega)^{1/2}coth({x \over 2})
Integrate to find a:
a=Ha_0(1-\Omega)^{1/2}coth({x \over 2})t
{{da \over dt} \over a}={1 \over t}
Therefore, the Hubble Radius:
R_H={c a \over ({da \over dt})}=ct
I just can't seem to find any references to this solution, so I don't know if it is actually correct.
Can anyone confirm?
Last edited: