Calculate density using convolution formula

Click For Summary

Discussion Overview

The discussion revolves around calculating the density of the sum of independent and identically distributed random variables, specifically the sum of three uniform random variables on the interval [0, 1]. Participants explore the convolution formula to derive the density function for the sum, addressing various cases based on the value of the sum.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory
  • Debate/contested

Main Points Raised

  • One participant introduces the problem of finding the density of the sum of three i.i.d. uniform random variables, suggesting the use of the convolution formula.
  • Another participant confirms the uniform distribution of the individual random variables and proposes splitting the integral into cases based on the value of the sum.
  • Several participants discuss the need to split the integral further based on the conditions of the random variables and the limits of integration.
  • There is a suggestion to consider the intersection of intervals to determine the bounds for the integral, with some participants questioning the necessity of further splitting the intervals.
  • Participants express uncertainty about the calculations and whether the derived results align with expected outcomes, particularly regarding the density function.
  • One participant summarizes the cases for the integral and presents the expected results, prompting agreement from others.

Areas of Agreement / Disagreement

Participants generally agree on the approach of using the convolution formula and the necessity of splitting the integral into cases, but there is no consensus on the final calculations or whether further splitting is required. The discussion remains unresolved regarding the exact form of the density function.

Contextual Notes

Participants note the importance of considering the bounds of integration and the conditions under which the density function is calculated. There are unresolved questions about the necessity of splitting intervals further based on the values of the random variables.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $X_1, X_2, X_3$ be i.i.d. with $X_1 \sim U[0, 1]$. I want to determine the density of $S=X_1+X_2+X_3$ using the convolution formula.

I have done the following:

Since $X_1, X_2, X_3$ are i.i.d. we have that they are independent identically distributed random variables. Since $X_1 \sim U[0, 1]$ we have that $X_1$ is distributed uniformly on the interval $[0,1]$.

So, all random variables $X_1, X_2, X_3$ are distributed uniformly on the interval $[0,1]$, right?

Then for the distribution we have that $$f_{X_1}(x)=f_{X_2}(x)=f_{X_3}(x)=\left\{\begin{matrix}
1 & \text{ if } 0\leq x\leq 1\\
0 & \text{ otherwise }
\end{matrix}\right.$$ To determine the density of $S=X_1+X_2+X_3$ we do the following:

We calculate first the density of $Y:=X_1+X_2$ using the convolution formula.

\begin{align*}f_Y(y)&=\int_{-\infty}^{+\infty}f_{X_1}(x)f_{X_2}(y-x)dx \\ & = \int_0^1f_{X_2}(y-x)dx \\ & = \int_0^1 1_{\{0\leq y -x\leq 1\}}dx \\ & = \int_0^1 1_{\{y-1\leq x\leq y\}}dx \end{align*}

At some notes I saw that this integral is equal to $$\left\{\begin{matrix}
y ,& 0\leq y\leq 1\\
2-y ,& 1\leq y\leq 2\\
0 ,& \text{ otherwise }
\end{matrix}\right.$$ How do we get that result? (Wondering) We apply again the convolution formula for $f_Y:=f_{X_1+X+2}$ and $f_{X_3}$.

\begin{align*}f_S(s)&=\int_{-\infty}^{+\infty}f_{Y}(x)f_{X_3}(s-x)dx \\ & = \int_0^1xf_{X_3}(s-x)dx+\int_1^2(2-x)f_{X_3}(s-x)dx \\ & = \int_0^1 x\cdot 1_{\{0\leq s -x\leq 1\}}dx +\int_1^2(2-x)\cdot 1_{\{0\leq s -x\leq 1\}}dx \\ & = \int_0^1 x\cdot 1_{\{s-1\leq x\leq s\}}dx +\int_1^2(2-x)\cdot 1_{\{s-1\leq x\leq s\}}dx\end{align*}

Is everything correct do far? How can we calculate the last integrals? (Wondering)
 
Physics news on Phys.org
mathmari said:
\begin{align*}f_Y(y)&= \int_0^1 1_{\{y-1\leq x\leq y\}}dx \end{align*}

At some notes I saw that this integral is equal to $$\left\{\begin{matrix}
y ,& 0\leq y\leq 1\\
2-y ,& 1\leq y\leq 2\\
0 ,& \text{ otherwise }
\end{matrix}\right.$$ How do we get that result?

Hey mathmari! (Smile)

We have to split the integral into cases:
\begin{align*}f_Y(y)&= \int_0^1 1_{\{y-1\leq x\leq y\}}dx \\
&= \begin{cases}
\int_0^1 1_{\{y-1\leq x\leq y\}}dx & \text{if }y< 0\\
\int_0^1 1_{\{y-1\leq x\leq y\}}dx & \text{if }0 \le y< 1\\
\int_0^1 1_{\{y-1\leq x\leq y\}}dx& \text{if }1 \le y < 2\\
\int_0^1 1_{\{y-1\leq x\leq y\}}dx& \text{if } 2 \le y\\
\end{cases}
\end{align*}
Can we calculate it now? (Wondering)
 
I like Serena said:
We have to split the integral into cases:
\begin{align*}f_Y(y)&= \int_0^1 1_{\{y-1\leq x\leq y\}}dx \\
&= \begin{cases}
\int_0^1 1_{\{y-1\leq x\leq y\}}dx & \text{if }y< 0\\
\int_0^1 1_{\{y-1\leq x\leq y\}}dx & \text{if }0 \le y< 1\\
\int_0^1 1_{\{y-1\leq x\leq y\}}dx& \text{if }1 \le y < 2\\
\int_0^1 1_{\{y-1\leq x\leq y\}}dx& \text{if } 2 \le y\\
\end{cases}
\end{align*}
Can we calculate it now? (Wondering)

If $y<0$ then $x$ is not in the interval $[0,1]$, so we have that $\int_0^1 1_{\{y-1\leq x\leq y\}}dx=\int_0^1 0dx=0$.

If $0 \le y< 1$ then we have that $-1\leq y-1\leq x\leq y<1$. Do we have to split it further?

If $1 \le y < 2$ then $0\leq y-1\leq x\leq y<2$. At the part $1<x<2$ the function is $0$. So, do we have to split this also further?

If $2 \le y$ then $x$ is bigger than in the interval $[0,1]$, so we have that $\int_0^1 1_{\{y-1\leq x\leq y\}}dx=\int_0^1 0dx=0$.

(Wondering)
 
mathmari said:
If $y<0$ then $x$ is not in the interval $[0,1]$, so we have that $\int_0^1 1_{\{y-1\leq x\leq y\}}dx=\int_0^1 0dx=0$.

If $2 \le y$ then $x$ is bigger than in the interval $[0,1]$, so we have that $\int_0^1 1_{\{y-1\leq x\leq y\}}dx=\int_0^1 0dx=0$.

Good! (Nod)

mathmari said:
If $0 \le y< 1$ then we have that $-1\leq y-1\leq x\leq y<1$. Do we have to split it further?

If $1 \le y < 2$ then $0\leq y-1\leq x\leq y<2$. At the part $1<x<2$ the function is $0$. So, do we have to split this also further?

No need to split it further.
Just consider that the bounds of our integral are for $0\le x < 1$. (Thinking)
 
I like Serena said:
No need to split it further.
Just consider that the bounds of our integral are for $0\le x < 1$. (Thinking)

Ah do we want that $[0,1]\subseteq [y-1, y]$ ? (Wondering)
 
mathmari said:
Ah do we want that $[0,1]\subseteq [y-1, y]$ ? (Wondering)

It's more like that we want to look at the interval $[0,1]\cap [y-1, y]$ in each case ... (Thinking)
 
I like Serena said:
It's more like that we want to look at the interval $[0,1]\cap [y-1, y]$ in each case ... (Thinking)

If $y<0$ then the intersection is empty. The same holds when $y>2$. If $0\leq y\leq 2$ then the intersection is not empty. Right?
Why do we split the interval $[0,2]$ into two intervals?

(Wondering)
 
mathmari said:
If $y<0$ then the intersection is empty. The same holds when $y>2$. If $0\leq y\leq 2$ then the intersection is not empty. Right?
Why do we split the interval $[0,2]$ into two intervals?

Because the bounds are different. I think we'll see when we work it out. (Thinking)
 
We have the following:
\begin{align*}&\begin{cases}
\int_0^1 1_{\{y-1\leq x\leq y\}}dx & \text{if }y< 0\\
\int_0^1 1_{\{y-1\leq x\leq y\}}dx & \text{if }0 \le y< 1\\
\int_0^1 1_{\{y-1\leq x\leq y\}}dx& \text{if }1 \le y < 2\\
\int_0^1 1_{\{y-1\leq x\leq y\}}dx& \text{if } 2 \le y\\
\end{cases} \\ & =\begin{cases}
\int_0^1 0dx & \text{if }y< 0\\
\int_0^y dx & \text{if }0 \le y< 1\\
\int_{y-1}^1 dx& \text{if }1 \le y < 2\\
\int_0^1 0dx& \text{if } 2 \le y\\
\end{cases} \\ & =\begin{cases}
0 & \text{if }y< 0\\
y & \text{if }0 \le y< 1\\
1-(y-1)=2-y& \text{if }1 \le y < 2\\
0& \text{if } 2 \le y\\
\end{cases}
\end{align*}

since when $0\leq y<1$ then $[y-1,y]\cap [0,1]=[0,y]$ and when $1\leq y<2$ then $[y-1,y]\cap [0,1]=[y-1,1]$, right? (Wondering)
 
  • #10
mathmari said:
since when $0\leq y<1$ then $[y-1,y]\cap [0,1]=[0,y]$ and when $1\leq y<2$ then $[y-1,y]\cap [0,1]=[y-1,1]$, right?

Right! (Nod)

Wait! Doesn't that look like the result we were supposed to get? (Wait)
 
  • #11
I like Serena said:
Right! (Nod)

Wait! Doesn't that look like the result we were supposed to get? (Wait)

Ah ok! Wir haben folgendes:

mathmari said:
We apply again the convolution formula for $f_Y:=f_{X_1+X+2}$ and $f_{X_3}$.

\begin{align*}f_S(s)&=\int_{-\infty}^{+\infty}f_{Y}(x)f_{X_3}(s-x)dx \\ & = \int_0^1xf_{X_3}(s-x)dx+\int_1^2(2-x)f_{X_3}(s-x)dx \\ & = \int_0^1 x\cdot 1_{\{0\leq s -x\leq 1\}}dx +\int_1^2(2-x)\cdot 1_{\{0\leq s -x\leq 1\}}dx \\ & = \int_0^1 x\cdot 1_{\{s-1\leq x\leq s\}}dx +\int_1^2(2-x)\cdot 1_{\{s-1\leq x\leq s\}}dx\end{align*}

Wir bekommen folgdnes :
\begin{align*}f_S(s)&=\int_{-\infty}^{+\infty}f_{Y}(x)f_{X_3}(s-x)dx \\ & = \int_0^1xf_{X_3}(s-x)dx+\int_1^2(2-x)f_{X_3}(s-x)dx \\ & = \int_0^1 x\cdot 1_{\{0\leq s -x\leq 1\}}dx +\int_1^2(2-x)\cdot 1_{\{0\leq s -x\leq 1\}}dx \\ & = \int_0^1 x\cdot 1_{\{-s\leq -x\leq 1-s\}}dx +\int_1^2(2-x)\cdot 1_{\{0\leq s -x\leq 1\}}dx \\ & = \int_0^1 x\cdot 1_{\{s-1\leq x\leq s\}}dx +\int_1^2(2-x)\cdot 1_{\{s-1\leq x\leq s\}}dx\end{align*}
Wir berechnen die zwei Integral getrennt:
  • $\displaystyle{\int_0^1 x\cdot 1_{\{s-1\leq x\leq s\}}dx}$ :
    \begin{align*}\int_0^1 x\cdot 1_{\{s-1\leq x\leq s\}}dx&=\begin{cases}
    \int_0^1 x\cdot 1_{\{s-1\leq x\leq s\}}dx & \text{wenn }s< 0\\
    \int_0^1 x\cdot 1_{\{s-1\leq x\leq s\}}dx & \text{wenn }0 \le s< 1\\
    \int_0^1 x\cdot 1_{\{s-1\leq x\leq s\}}dx& \text{wenn }1 \le s < 2\\
    \int_0^1 x\cdot 1_{\{s-1\leq x\leq s\}}dx& \text{wenn } 2 \le s\\
    \end{cases} \\ & = \begin{cases}
    \int_0^1 x\cdot 0dx & \text{wenn }s< 0\\
    \int_0^s x dx & \text{wenn }0 \le s< 1\\
    \int_{s-1}^1 xdx& \text{wenn }1 \le s < 2\\
    \int_0^1 x\cdot 0dx& \text{wenn } 2 \le s\\
    \end{cases} \\ & = \begin{cases}
    0& \text{wenn }s< 0\\
    \frac{s^2}{2} & \text{wenn }0 \le s< 1\\
    \frac{1}{2}-\frac{(s-1)^2}{2}& \text{wenn }1 \le s < 2\\
    0& \text{wenn } 2 \le s\\
    \end{cases} \\ & = \begin{cases}
    \frac{s^2}{2} & \text{wenn }0 \le s< 1\\
    \frac{1}{2}-\frac{s^2-2s+1}{2}& \text{wenn }1 \le s < 2\\
    0& \text{sonst } \\
    \end{cases} \\ & = \begin{cases}
    \frac{s^2}{2} & \text{wenn }0 \le s< 1\\
    -\frac{s^2-2s}{2}& \text{wenn }1 \le s < 2\\
    0& \text{sonst } \\
    \end{cases}\end{align*}
  • $\displaystyle{\int_1^2(2-x)\cdot 1_{\{s-1\leq x\leq s\}}dx}$ :
    \begin{align*}\int_1^2(2-x)\cdot 1_{\{s-1\leq x\leq s\}}dx&=\begin{cases}
    \int_1^2(2-x)\cdot 1_{\{s-1\leq x\leq s\}}dx & \text{wenn }s< 1\\
    \int_1^2(2-x)\cdot 1_{\{s-1\leq x\leq s\}}dx & \text{wenn }1 \le s< 2\\
    \int_1^2(2-x)\cdot 1_{\{s-1\leq x\leq s\}}dx& \text{wenn }2 \le s < 3\\
    \int_1^2(2-x)\cdot 1_{\{s-1\leq x\leq s\}}dx& \text{wenn } 3 \le s\\
    \end{cases} \\ & = \begin{cases}
    \int_1^2(2-x)\cdot 0 dx & \text{wenn }s< 1\\
    \int_1^s(2-x)dx & \text{wenn }1 \le s< 2\\
    \int_{s-1}^2(2-x)dx& \text{wenn }2 \le s < 3\\
    \int_1^2(2-x)\cdot 0 dx& \text{wenn } 3 \le s\\
    \end{cases} \\ & = \begin{cases}
    0& \text{wenn }s< 1\\
    \left (2s-\frac{s^2}{2}\right )-\left (2-\frac{1^2}{2}\right ) & \text{wenn }1 \le s< 2\\
    \left (4-\frac{2^2}{2}\right )-\left (2(s-1)-\frac{(s-1)^2}{2}\right ) & \text{wenn }2 \le s < 3\\
    0& \text{wenn } 3 \le s\\
    \end{cases} \\ & = \begin{cases}
    2s-\frac{s^2}{2}-\frac{3}{2} & \text{wenn }1 \le s< 2\\
    \left (4-2\right )-\left (2s-2-\frac{s^2-2s+1}{2}\right ) & \text{wenn }2 \le s < 3\\
    0& \text{sonst } \\
    \end{cases} \\ & = \begin{cases}
    2s-\frac{s^2}{2}-\frac{3}{2} & \text{wenn }1 \le s< 2\\
    2-2s+2+\frac{s^2}{2}-s+\frac{1}{2} & \text{wenn }2 \le s < 3\\
    0& \text{sonst } \\
    \end{cases} \\ & = \begin{cases}
    -\frac{s^2}{2}+2s-\frac{3}{2} & \text{wenn }1 \le s< 2\\
    \frac{s^2}{2}-3s+\frac{9}{2} & \text{wenn }2 \le s < 3\\
    0& \text{sonst } \\
    \end{cases}\end{align*}

Wir bekommen also folgendes:
\begin{align*}f_S(s)&=\int_0^1 x\cdot 1_{\{s-1\leq x\leq s\}}dx +\int_1^2(2-x)\cdot 1_{\{s-1\leq x\leq s\}}dx \\ & = \begin{cases}
\frac{s^2}{2} & \text{wenn }0 \le s< 1\\
-\frac{s^2-2s}{2}-\frac{s^2}{2}+2s-\frac{3}{2}& \text{wenn }1 \le s < 2\\
\frac{s^2}{2}-3s+\frac{9}{2} & \text{wenn }2 \le s < 3\\
0& \text{sonst } \\
\end{cases} \\ & = \begin{cases}
\frac{s^2}{2} & \text{wenn }0 \le s< 1\\
-s^2+3s-\frac{3}{2}& \text{wenn }1 \le s < 2\\
\frac{s^2}{2}-3s+\frac{9}{2} & \text{wenn }2 \le s < 3\\
0& \text{sonst } \\
\end{cases}\end{align*}

Us everything correct? (Wondering)
 
  • #12
Dein Ergebnis scheint mit Wolfram übereinzustimmen. (Nod)
 
  • #13
I like Serena said:
Dein Ergebnis scheint mit Wolfram übereinzustimmen. (Nod)

Danke! (Giggle) (Mmm)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
8K
Replies
3
Views
2K