Calculate Electric Flux from Point Charge to Plate:

Click For Summary
The discussion revolves around calculating the electric flux from a point charge to a flat plate using surface integrals in both Cartesian and spherical coordinates. Participants seek guidance on solving the problem using integrals, as one member has already approached it using symmetry. The Cartesian approach involves integrating the electric field over the surface of the plate, while the spherical method requires transforming the area element and integrating accordingly. Questions arise regarding the integration of specific trigonometric functions, particularly the cosine function. The conversation emphasizes the need for clarity on the plate's orientation and the appropriate mathematical transformations for the integrals.
Faiq
Messages
347
Reaction score
16

Homework Statement


A ##10 cm## (on y axis) by ##10 cm## (on z axis) flat plate is located ##5 cm## away (on x axis) from a point charge ##q##. Calculate the electric flux from the point charge to the plate.

Can somebody solve it using surface integral using both spherical and cartesian coordinates. I did solve it using symmetry but I don't know how to solve it using integrals?

Cartesian
$$ \oint_s \vec{E}^\ \cdot \vec{n}^\ dS= \iint \frac{\lambda}{4\pi \varepsilon_0} \frac{\mathbf{r-r'}}{|\mathbf{r-r'}|^3}\cdot \vec{n}^\ dS = \iint \frac{\lambda}{4\pi \varepsilon_0} \frac{x-x_{0}}{((x-x_0)^2+y^2+z^2)^\frac{3}{2}} dS = \iint \frac{\lambda}{4\pi \varepsilon_0} \frac{x-x_{0}}{((x-x_0)^2+y^2+z^2)^\frac{3}{2}} dydz$$
where ##x_0## is ##5cm##

Spherical
$$ dydz = \frac{\partial(y,z)}{\partial (\phi,\theta)}d\phi d\theta = -\sin^2\phi \cos \theta ~d\phi d\theta$$
$$ \oint_s \vec{E}^\ \cdot \vec{n}^\ dS= \iint \frac{\lambda}{4\pi \varepsilon_0} \frac{ dS}{|\mathbf{r}|^2}i\cdot \vec{n}^\ = \iint \frac{\lambda}{4\pi \varepsilon_0} \frac{ dS}{|\mathbf{r}|^2}(\cos \theta \sin \phi ) = -\iint \frac{\lambda}{4\pi \varepsilon_0} \frac{ d\phi d\theta}{|\mathbf{r}|^2}(\cos^2 \theta \sin^3 \phi ) = \iint \frac{\lambda}{4\pi \varepsilon_0} \frac{ dS}{|\mathbf{r}|^2}(\cos \theta \sin \phi ) = -\iint \frac{\lambda}{4\pi \varepsilon_0} \frac{ d\phi d\theta}{x_0^2}(\cos^4 \theta \sin^5 \phi ) $$
 
Last edited:
Physics news on Phys.org
##\int \sin^5(\phi).d\phi## is fairly straightforward.
What would you do with ##\int \cos^2##?

(Is the plate centred on the x axis?)
 
Convert into a sine function?
Yes
 
Last edited:
Faiq said:
Convert into a sine function?
Yes
No. Cos(2x)=?
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 18 ·
Replies
18
Views
1K
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
8
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
1K
Replies
11
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K