Calculate Electric Flux from Point Charge to Plate:

AI Thread Summary
The discussion revolves around calculating the electric flux from a point charge to a flat plate using surface integrals in both Cartesian and spherical coordinates. Participants seek guidance on solving the problem using integrals, as one member has already approached it using symmetry. The Cartesian approach involves integrating the electric field over the surface of the plate, while the spherical method requires transforming the area element and integrating accordingly. Questions arise regarding the integration of specific trigonometric functions, particularly the cosine function. The conversation emphasizes the need for clarity on the plate's orientation and the appropriate mathematical transformations for the integrals.
Faiq
Messages
347
Reaction score
16

Homework Statement


A ##10 cm## (on y axis) by ##10 cm## (on z axis) flat plate is located ##5 cm## away (on x axis) from a point charge ##q##. Calculate the electric flux from the point charge to the plate.

Can somebody solve it using surface integral using both spherical and cartesian coordinates. I did solve it using symmetry but I don't know how to solve it using integrals?

Cartesian
$$ \oint_s \vec{E}^\ \cdot \vec{n}^\ dS= \iint \frac{\lambda}{4\pi \varepsilon_0} \frac{\mathbf{r-r'}}{|\mathbf{r-r'}|^3}\cdot \vec{n}^\ dS = \iint \frac{\lambda}{4\pi \varepsilon_0} \frac{x-x_{0}}{((x-x_0)^2+y^2+z^2)^\frac{3}{2}} dS = \iint \frac{\lambda}{4\pi \varepsilon_0} \frac{x-x_{0}}{((x-x_0)^2+y^2+z^2)^\frac{3}{2}} dydz$$
where ##x_0## is ##5cm##

Spherical
$$ dydz = \frac{\partial(y,z)}{\partial (\phi,\theta)}d\phi d\theta = -\sin^2\phi \cos \theta ~d\phi d\theta$$
$$ \oint_s \vec{E}^\ \cdot \vec{n}^\ dS= \iint \frac{\lambda}{4\pi \varepsilon_0} \frac{ dS}{|\mathbf{r}|^2}i\cdot \vec{n}^\ = \iint \frac{\lambda}{4\pi \varepsilon_0} \frac{ dS}{|\mathbf{r}|^2}(\cos \theta \sin \phi ) = -\iint \frac{\lambda}{4\pi \varepsilon_0} \frac{ d\phi d\theta}{|\mathbf{r}|^2}(\cos^2 \theta \sin^3 \phi ) = \iint \frac{\lambda}{4\pi \varepsilon_0} \frac{ dS}{|\mathbf{r}|^2}(\cos \theta \sin \phi ) = -\iint \frac{\lambda}{4\pi \varepsilon_0} \frac{ d\phi d\theta}{x_0^2}(\cos^4 \theta \sin^5 \phi ) $$
 
Last edited:
Physics news on Phys.org
##\int \sin^5(\phi).d\phi## is fairly straightforward.
What would you do with ##\int \cos^2##?

(Is the plate centred on the x axis?)
 
Convert into a sine function?
Yes
 
Last edited:
Faiq said:
Convert into a sine function?
Yes
No. Cos(2x)=?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top