- #1
skrat
- 748
- 8
Homework Statement
Let ##K## be a circle ##|z-2|=2##. Using Cauchy's formula calculate ##\int _K\frac{(z-1)\sin(z)}{z^2-2z-3}dz##
Homework Equations
Cauchy's formula: ##f(a)2\pi i=\oint _k\frac{f(z)dz}{z-a}##
The Attempt at a Solution
It's my first time dealing with this kind of problems so I am not really sure that what I am doing is in fact the right way to do it. I would be really happy if one could check my solution.
##\frac{(z-1)\sin(z)}{z^2-2z-3}=\frac{(z-1)\sin(z)}{(z-3)(z+1)}## therefore ##a_1=3## and ##a_2=-1##.
For ##a_1=3##:
##f(z)=\frac{(z-1)\sin(z)}{z+1}##
##f(a)2\pi i=\oint _k\frac{f(z)dz}{z-a}##
##\frac{2\sin(3)}{4}2\pi i=\int _K\frac{\frac{(z-1)\sin(z)}{z+1}}{z-3}dz##
For ##a_2=-1##:
##f(z)=\frac{(z-1)\sin(z)}{z-3}##
##f(a)2\pi i=\oint _k\frac{f(z)dz}{z-a}##
##\frac{-2\sin(-1)}{-4}2\pi i=\int _K\frac{\frac{(z-1)\sin(z)}{z-3}}{z+1}dz##
##-\pi i\sin(1)=\int _K\frac{\frac{(z-1)\sin(z)}{z-3}}{z+1}dz##
Since ##K## is a circle with center in 2 and radius 2, point ##a_2=-1## is not inside ##K##. Which means that only integral around ##a_1=3## counts and therefore
##\int _K\frac{(z-1)\sin(z)}{z^2-2z-3}dz=\int _K\frac{\frac{(z-1)\sin(z)}{z+1}}{z-3}dz=\frac{2\sin(3)}{4}2\pi i##.
I HOPE so. Thanks in advance!