MHB Calculate integral using Stokes Theorem

Click For Summary
The discussion focuses on calculating the integral using Stokes' Theorem for the curve defined by the equations x² + y² = 1 and x + y + z = 1. Participants clarify that the curve is indeed closed despite the use of the integral symbol, which does not imply an open curve. The surface Σ can be chosen as the plane x + y + z = 1 bounded by the cylinder x² + y² = 1, and any surface with the same boundary is acceptable. There is also a debate on how to express the surface parametrically, with suggestions for both Cartesian and polar coordinates. The conversation emphasizes the importance of understanding the relationship between the curve and the surface in applying Stokes' Theorem correctly.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to calculate $\int_{\sigma}\left (-y^3dx+x^3dy-^3dz\right )$ using the fomula of Stokes, when $\sigma$ is the curve that is defined by the relations $x^2+y^2=1$ and $x+y+z=1$.

Is the curve not closed? Because we have an integral of the form $\int_{\sigma}$ and not of the form $\oint_{\sigma}$ ? (Wondering)

We have that $$\int_{\sigma}\left (-y^3dx+x^3dy-^3dz\right )=\int_{\sigma}\left (-y^3, x^3, -z^3\right )\cdot \left (dx, dy, dz\right )=\int_{\sigma}f\cdot d\sigma$$ with $f(x,y,z)=\left (-y^3, x^3, -z^3\right )$, right?

From the formula of Stokes we have that $$\int_{\sigma} f\cdot d\sigma=\iint_{\Sigma}\left (\nabla \times f\right )\cdot N\ dA$$ Which is the surface $\Sigma$ ? Do we take the intersection of the given relations $x^2+y^2=1$ and $x+y+z=1$ ? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

I want to calculate $\int_{\sigma}\left (-y^3dx+x^3dy-^3dz\right )$ using the fomula of Stokes, when $\sigma$ is the curve that is defined by the relations $x^2+y^2=1$ and $x+y+z=1$.

Is the curve not closed? Because we have an integral of the form $\int_{\sigma}$ and not of the form $\oint_{\sigma}$ ?

Hey mathmari!

The intersection of $x^2+y^2=1$ and $x+y+z=1$ is a closed curve.
So yes, it's closed.
The fact that the symbol $\int$ is used instead of $\oint$ doesn't mean it's not closed. The circle in the integral symbol is just an indication. Leaving it out doesn't mean it's not closed. (Thinking)

mathmari said:
We have that $$\int_{\sigma}\left (-y^3dx+x^3dy-^3dz\right )=\int_{\sigma}\left (-y^3, x^3, -z^3\right )\cdot \left (dx, dy, dz\right )=\int_{\sigma}f\cdot d\sigma$$ with $f(x,y,z)=\left (-y^3, x^3, -z^3\right )$, right?

From the formula of Stokes we have that $$\int_{\sigma} f\cdot d\sigma=\iint_{\Sigma}\left (\nabla \times f\right )\cdot N\ dA$$ Which is the surface $\Sigma$ ? Do we take the intersection of the given relations $x^2+y^2=1$ and $x+y+z=1$ ?

Yes. (Nod)
Actually, any surface with the same bounding curve will do, but the plane $x+y+z=1$ bounded by the cylinder $x^2+y^2=1$ seems to be a good choice.
 
I like Serena said:
Hey mathmari!

The intersection of $x^2+y^2=1$ and $x+y+z=1$ is a closed curve.
So yes, it's closed.
The fact that the symbol $\int$ is used instead of $\oint$ doesn't mean it's not closed. The circle in the integral symbol is just an indication. Leaving it out doesn't mean it's not closed. (Thinking)
Yes. (Nod)
Actually, any surface with the same bounding curve will do, but the plane $x+y+z=1$ bounded by the cylinder $x^2+y^2=1$ seems to be a good choice.

We have that $x^2+y^2=1 \Rightarrow y^2=1-x^2 \Rightarrow y=\pm \sqrt{1-x^2}$ and $x+y+z=1 \Rightarrow z=1-x-y$.

So, do we consider $\Sigma (x,y)=\left (x, \pm \sqrt{1-x^2}, 1-x-y\right )$ ? (Wondering)
 
mathmari said:
We have that $x^2+y^2=1 \Rightarrow y^2=1-x^2 \Rightarrow y=\pm \sqrt{1-x^2}$ and $x+y+z=1 \Rightarrow z=1-x-y$.

So, do we consider $\Sigma (x,y)=\left (x, \pm \sqrt{1-x^2}, 1-x-y\right )$ ?

Shouldn't that be $\Sigma (x,y)=\left (x, y, 1-x-y\right )$?

Or alternatively $\Sigma(r,\theta)=(r\cos\theta, r\sin\theta, 1 - r\cos\theta - r\sin\theta)$? (Wondering)
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K