Calculate Square of Sum ∑1..9999

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Square Sum
Click For Summary

Discussion Overview

The discussion revolves around the calculation of the square of a sum involving square roots and summations, specifically focusing on the expression $$\left(\sum_{n=1}^{9999}\frac{\sqrt{100+\sqrt{n}}}{\sqrt{100-\sqrt{n}}}+\sum_{n=1}^{9999}\frac{\sqrt{100-\sqrt{n}}}{\sqrt{100+\sqrt{n}}}\right)^2$$. Participants explore methods for simplifying the sums, generalizations of the problem, and numerical experimentation with specific values.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Technical explanation
  • Debate/contested

Main Points Raised

  • Some participants propose simplifying the sums by multiplying by the conjugate of the denominator.
  • A participant suggests a generalization of the problem to find $$\biggl(f(N) + \frac1{f(N)}\biggr)^{\!2}$$, where $$f(N)$$ is defined in terms of summations involving square roots.
  • Numerical experimentation is presented, with a participant calculating $$f(2)$$ and noting its proximity to $$1+\sqrt{2}$$, raising questions about proving this observation for higher values of $$N$$.
  • Another participant provides a detailed solution approach, attempting to derive a formula for $$f(N)$$ and concluding that $$f(N) = 1+\sqrt{2}$$.
  • Participants express admiration for each other's methods and solutions, indicating a collaborative atmosphere.

Areas of Agreement / Disagreement

There is no consensus on the simplification methods or the generalization of the problem. Multiple competing views and approaches are presented, and the discussion remains unresolved regarding the proofs and generalizations proposed.

Contextual Notes

Participants rely on numerical approximations and conjectures without formal proofs for some claims, leading to potential limitations in the rigor of the arguments presented.

Albert1
Messages
1,221
Reaction score
0
$$\left(\sum_{n=1}^{9999}\frac{\sqrt{100+\sqrt{n}}}{\sqrt{100-\sqrt{n}}}+\sum_{n=1}^{9999}\frac{\sqrt{100-\sqrt{n}}}{\sqrt{100+\sqrt{n}}}\right)^2$$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$(\sum_{n=1}^{9999}\dfrac{\sqrt{100+\sqrt n}}{\sqrt{100-\sqrt n}}
+\sum_{n=1}^{9999}\dfrac{\sqrt{100-\sqrt n}}{\sqrt{100+\sqrt n}})^2$

I would try to simplify these sums by multiplying the top and bottom of each by the bottom's conjugate.
 
Albert said:
$(\sum_{n=1}^{9999}\dfrac{\sqrt{100+\sqrt n}}{\sqrt{100-\sqrt n}}
+\sum_{n=1}^{9999}\dfrac{\sqrt{100-\sqrt n}}{\sqrt{100+\sqrt n}})^2$
sorry it should be:

$$\left(\frac{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}
+\frac{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}\right)^2$$
 
Albert said:
$$\left(\frac{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}
+\frac{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}\right)^2$$
8
[sp]Generalisation. This is a particular case ($N=100$) of this problem:

Find $$\biggl(f(N) + \frac1{f(N)}\biggr)^{\!2}$$, where $$f(N) = \frac{\sum\limits_{n=1}^{N^2-1}\sqrt{N+\sqrt n}}{\sum\limits_{n=1}^{N^2-1}\sqrt{N-\sqrt n}}.$$

Experimentation. To see which way the wind is blowing, I got out my trusty pocket calculator and found a numerical expression for $f(2)$: $$f(2) = \frac{\sqrt{2 + \sqrt1} + \sqrt{2 + \sqrt2} + \sqrt{2 + \sqrt3}} {\sqrt{2 - \sqrt1} + \sqrt{2 - \sqrt2} + \sqrt{2 - \sqrt3}} \approx \frac{1.732 + 1.848 + 1.932}{1.000 + 0.765 + 0.518} = \frac{5.512}{2.283} \approx 2.414.$$ I recognised that answer as being suspiciously close to $1+\sqrt2$, but I could not see either how to prove that or how to generalise it for higher values of $N$. So I did the same calculation for $N=3$, and found to my surprise that answer again looked like $1+\sqrt2$. This made me wonder what the denominator of the fraction for $f(2)$ would look like if I multiplied it by $\sqrt2$, and that led to the following table: $$ \begin{array}{r|cccl} \text{row 1} & 1.732 & 1.848 & 1.932 & \text{(numerator)} \\ \text{row 2} & 1.000 & 0.765 & 0.518 & \text{(denominator)} \\ \text{row 3} & 1.414 & 1.082 & 0.732 & \text{(row 2 times $\sqrt2$)} \\ \text{row 4} & 0.732 & 1.082 & 1.414 & \text{(row 3 reversed)} \\ \text{row 5} & 1.732 & 1.848 & 1.932 & \text{(row 2 plus row 4)} \end{array}$$ Row 5 is the same as row 1! That gave me the idea for proving that $f(N) = 1 + \sqrt2$ for all $N$.

Solution. For $1\leqslant n< N$, $$\begin{aligned} 2\bigl(N - \sqrt{N^2-n}\bigr) &= 2N - 2\sqrt{N^2-n} \\ &= (N + \sqrt n) - 2 \sqrt{(N+\sqrt n)(N - \sqrt n)} + (N - \sqrt n) \\ &= \bigl(\sqrt{N + \sqrt n} - \sqrt{N - \sqrt n}\bigr)^2. \end{aligned}$$ Take the positive square root of both sides, to get $\sqrt2\sqrt{N - \sqrt{N^2-n}} = \sqrt{N + \sqrt n} - \sqrt{N - \sqrt n}$ and therefore $\sqrt{N - \sqrt n} + \sqrt2\sqrt{N - \sqrt{N^2-n}} = \sqrt{N + \sqrt n}.$ Sum that from $n=1$ to $N^2-1$: $$ \sum_{n=1}^{N^2-1}\sqrt{N - \sqrt n}\: + \sum_{n=1}^{N^2-1}\sqrt2\sqrt{N - \sqrt{N^2-n}} = \sum_{n=1}^{N^2-1}\sqrt{N + \sqrt n}.$$ Now reverse the order of summation for the second sum on the left side, by replacing $n$ by $N^2-n$: $$ \sum_{n=1}^{N^2-1}\sqrt{N - \sqrt n}\: + \sum_{n=1}^{N^2-1}\sqrt2\sqrt{N - \sqrt n} = \sum_{n=1}^{N^2-1}\sqrt{N + \sqrt n}.$$ The left side is then $$\bigl(1+\sqrt2\bigr)\sqrt{N - \sqrt n}$$, from which it follows that $f(N) = 1+\sqrt2.$

Conclusion. $$\biggl(f(N) + \frac1{f(N)}\biggr)^{\!2} = \bigl((1+\sqrt2) + (1+\sqrt2)^{-1}\bigr)^2 =\bigl((1+\sqrt2) + (\sqrt2 - 1)\bigr)^2 = \bigl(2\sqrt2\bigr)^2 = 8.$$[/sp]
 
Opalg's has given one so detail solution and my hat is off to him!

My solution that is essentially quite the same as Opalg's method:

If we let

$a=\sqrt{100+\sqrt n}-\sqrt{100-\sqrt n}$

Then squaring, rearranging and taking square root of it we have

$a^2=100+\sqrt n+100-\sqrt n-2(\sqrt{100+\sqrt n})(\sqrt{100-\sqrt n})$

$a^2=200--2\sqrt{100^2-n})$

$a^2=2(100-\sqrt{100^2-n})$

$a=\sqrt{2}\sqrt{(100-\sqrt{100^2-n})}$

$\therefore \sqrt{2}\sqrt{(100-\sqrt{100^2-n})}=\sqrt{100+\sqrt n}-\sqrt{100-\sqrt n}$

Notice that

$\begin{align*}\displaystyle \sum\limits_{n=1}^{9999}\sqrt{2}\sqrt{(100-\sqrt{100^2-n})}&=\sqrt{2}\sum\limits_{n=1}^{9999}\sqrt{(100-\sqrt{100^2-n})}\\&=\sqrt{2}\left(\sqrt{100-\sqrt{9999}}+\sqrt{100-\sqrt{9998}}+\cdots +\sqrt{100-\sqrt{2}}+\sqrt{100-\sqrt{1}}\right)\\&=\sqrt{2}\left(\sqrt{100-\sqrt{1}}+\sqrt{100-\sqrt{2}}+\cdots +\sqrt{100-\sqrt{9998}}+\sqrt{100-\sqrt{9999}}\right)\\&=\sqrt{2}\sum\limits_{n=1}^{9999}\sqrt{(100-\sqrt{n})}\end{align*}$

So we have
$\displaystyle \sum\limits_{n=1}^{9999} \sqrt{2}\sqrt{(100-\sqrt{100^2-n})}= \sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}- \sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}$

$\displaystyle\sqrt{2}\sum\limits_{n=1}^{9999}\sqrt{(100-\sqrt{n})}=\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}- \sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}$

$\displaystyle\sum\limits_{n=1}^{9999}\sqrt{(100-\sqrt{n})}(\sqrt{2}+1)=\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}$

Replacing this into the first fraction inside the square of the expression gives

$\begin{align*}\displaystyle \frac{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}&=\frac{\sum\limits_{n=1}^{9999}\sqrt{(100-\sqrt{n})}(\sqrt{2}+1)}{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}\\&=\sqrt{2}+1\end{align*}$

Hence,

$\begin{align*}\displaystyle \frac{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}&=\dfrac{1}{\sqrt{2}+1}\\&=\sqrt{2}-1 \end{align*}$

Last, we see that

$\displaystyle \left(\frac{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}
+\frac{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}\right)^2=(\sqrt{2}+1+\sqrt{2}-1)^2=8$
 

Similar threads

  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 27 ·
Replies
27
Views
6K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
1
Views
3K