MHB Calculate Square of Sum ∑1..9999

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Square Sum
Albert1
Messages
1,221
Reaction score
0
$$\left(\sum_{n=1}^{9999}\frac{\sqrt{100+\sqrt{n}}}{\sqrt{100-\sqrt{n}}}+\sum_{n=1}^{9999}\frac{\sqrt{100-\sqrt{n}}}{\sqrt{100+\sqrt{n}}}\right)^2$$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$(\sum_{n=1}^{9999}\dfrac{\sqrt{100+\sqrt n}}{\sqrt{100-\sqrt n}}
+\sum_{n=1}^{9999}\dfrac{\sqrt{100-\sqrt n}}{\sqrt{100+\sqrt n}})^2$

I would try to simplify these sums by multiplying the top and bottom of each by the bottom's conjugate.
 
Albert said:
$(\sum_{n=1}^{9999}\dfrac{\sqrt{100+\sqrt n}}{\sqrt{100-\sqrt n}}
+\sum_{n=1}^{9999}\dfrac{\sqrt{100-\sqrt n}}{\sqrt{100+\sqrt n}})^2$
sorry it should be:

$$\left(\frac{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}
+\frac{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}\right)^2$$
 
Albert said:
$$\left(\frac{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}
+\frac{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}\right)^2$$
8
[sp]Generalisation. This is a particular case ($N=100$) of this problem:

Find $$\biggl(f(N) + \frac1{f(N)}\biggr)^{\!2}$$, where $$f(N) = \frac{\sum\limits_{n=1}^{N^2-1}\sqrt{N+\sqrt n}}{\sum\limits_{n=1}^{N^2-1}\sqrt{N-\sqrt n}}.$$

Experimentation. To see which way the wind is blowing, I got out my trusty pocket calculator and found a numerical expression for $f(2)$: $$f(2) = \frac{\sqrt{2 + \sqrt1} + \sqrt{2 + \sqrt2} + \sqrt{2 + \sqrt3}} {\sqrt{2 - \sqrt1} + \sqrt{2 - \sqrt2} + \sqrt{2 - \sqrt3}} \approx \frac{1.732 + 1.848 + 1.932}{1.000 + 0.765 + 0.518} = \frac{5.512}{2.283} \approx 2.414.$$ I recognised that answer as being suspiciously close to $1+\sqrt2$, but I could not see either how to prove that or how to generalise it for higher values of $N$. So I did the same calculation for $N=3$, and found to my surprise that answer again looked like $1+\sqrt2$. This made me wonder what the denominator of the fraction for $f(2)$ would look like if I multiplied it by $\sqrt2$, and that led to the following table: $$ \begin{array}{r|cccl} \text{row 1} & 1.732 & 1.848 & 1.932 & \text{(numerator)} \\ \text{row 2} & 1.000 & 0.765 & 0.518 & \text{(denominator)} \\ \text{row 3} & 1.414 & 1.082 & 0.732 & \text{(row 2 times $\sqrt2$)} \\ \text{row 4} & 0.732 & 1.082 & 1.414 & \text{(row 3 reversed)} \\ \text{row 5} & 1.732 & 1.848 & 1.932 & \text{(row 2 plus row 4)} \end{array}$$ Row 5 is the same as row 1! That gave me the idea for proving that $f(N) = 1 + \sqrt2$ for all $N$.

Solution. For $1\leqslant n< N$, $$\begin{aligned} 2\bigl(N - \sqrt{N^2-n}\bigr) &= 2N - 2\sqrt{N^2-n} \\ &= (N + \sqrt n) - 2 \sqrt{(N+\sqrt n)(N - \sqrt n)} + (N - \sqrt n) \\ &= \bigl(\sqrt{N + \sqrt n} - \sqrt{N - \sqrt n}\bigr)^2. \end{aligned}$$ Take the positive square root of both sides, to get $\sqrt2\sqrt{N - \sqrt{N^2-n}} = \sqrt{N + \sqrt n} - \sqrt{N - \sqrt n}$ and therefore $\sqrt{N - \sqrt n} + \sqrt2\sqrt{N - \sqrt{N^2-n}} = \sqrt{N + \sqrt n}.$ Sum that from $n=1$ to $N^2-1$: $$ \sum_{n=1}^{N^2-1}\sqrt{N - \sqrt n}\: + \sum_{n=1}^{N^2-1}\sqrt2\sqrt{N - \sqrt{N^2-n}} = \sum_{n=1}^{N^2-1}\sqrt{N + \sqrt n}.$$ Now reverse the order of summation for the second sum on the left side, by replacing $n$ by $N^2-n$: $$ \sum_{n=1}^{N^2-1}\sqrt{N - \sqrt n}\: + \sum_{n=1}^{N^2-1}\sqrt2\sqrt{N - \sqrt n} = \sum_{n=1}^{N^2-1}\sqrt{N + \sqrt n}.$$ The left side is then $$\bigl(1+\sqrt2\bigr)\sqrt{N - \sqrt n}$$, from which it follows that $f(N) = 1+\sqrt2.$

Conclusion. $$\biggl(f(N) + \frac1{f(N)}\biggr)^{\!2} = \bigl((1+\sqrt2) + (1+\sqrt2)^{-1}\bigr)^2 =\bigl((1+\sqrt2) + (\sqrt2 - 1)\bigr)^2 = \bigl(2\sqrt2\bigr)^2 = 8.$$[/sp]
 
Opalg's has given one so detail solution and my hat is off to him!

My solution that is essentially quite the same as Opalg's method:

If we let

$a=\sqrt{100+\sqrt n}-\sqrt{100-\sqrt n}$

Then squaring, rearranging and taking square root of it we have

$a^2=100+\sqrt n+100-\sqrt n-2(\sqrt{100+\sqrt n})(\sqrt{100-\sqrt n})$

$a^2=200--2\sqrt{100^2-n})$

$a^2=2(100-\sqrt{100^2-n})$

$a=\sqrt{2}\sqrt{(100-\sqrt{100^2-n})}$

$\therefore \sqrt{2}\sqrt{(100-\sqrt{100^2-n})}=\sqrt{100+\sqrt n}-\sqrt{100-\sqrt n}$

Notice that

$\begin{align*}\displaystyle \sum\limits_{n=1}^{9999}\sqrt{2}\sqrt{(100-\sqrt{100^2-n})}&=\sqrt{2}\sum\limits_{n=1}^{9999}\sqrt{(100-\sqrt{100^2-n})}\\&=\sqrt{2}\left(\sqrt{100-\sqrt{9999}}+\sqrt{100-\sqrt{9998}}+\cdots +\sqrt{100-\sqrt{2}}+\sqrt{100-\sqrt{1}}\right)\\&=\sqrt{2}\left(\sqrt{100-\sqrt{1}}+\sqrt{100-\sqrt{2}}+\cdots +\sqrt{100-\sqrt{9998}}+\sqrt{100-\sqrt{9999}}\right)\\&=\sqrt{2}\sum\limits_{n=1}^{9999}\sqrt{(100-\sqrt{n})}\end{align*}$

So we have
$\displaystyle \sum\limits_{n=1}^{9999} \sqrt{2}\sqrt{(100-\sqrt{100^2-n})}= \sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}- \sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}$

$\displaystyle\sqrt{2}\sum\limits_{n=1}^{9999}\sqrt{(100-\sqrt{n})}=\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}- \sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}$

$\displaystyle\sum\limits_{n=1}^{9999}\sqrt{(100-\sqrt{n})}(\sqrt{2}+1)=\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}$

Replacing this into the first fraction inside the square of the expression gives

$\begin{align*}\displaystyle \frac{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}&=\frac{\sum\limits_{n=1}^{9999}\sqrt{(100-\sqrt{n})}(\sqrt{2}+1)}{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}\\&=\sqrt{2}+1\end{align*}$

Hence,

$\begin{align*}\displaystyle \frac{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}&=\dfrac{1}{\sqrt{2}+1}\\&=\sqrt{2}-1 \end{align*}$

Last, we see that

$\displaystyle \left(\frac{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}
+\frac{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}\right)^2=(\sqrt{2}+1+\sqrt{2}-1)^2=8$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top