Calculating acceleration of a prism and block connected to a wall through a rope and pulley

AI Thread Summary
The discussion focuses on calculating the acceleration of a prism and a block connected by a rope and pulley system. The block experiences forces due to gravity and the tension in the rope, while the prism's acceleration must be determined in relation to these forces. Participants analyze force diagrams and apply Newton's laws to both the block and the prism, questioning the contact forces and the role of tension in the system. A key point raised is the constraint of the rope's length, which affects the relationship between the accelerations of the block and the prism. The conversation highlights the complexity of the system and the need for careful consideration of all forces involved.
Patrick Herp
Messages
5
Reaction score
0
Homework Statement
The figure shows a block of mass m above a prism of mass M with a slope α. The block is connected to the wall through a massless rope and pulley system. Assume all surfaces are smooth. Determine the acceleration of prism M with respect to the ground.
Relevant Equations
$$
\sum{F} = ma
$$
The figure shows a block of mass m above a prism of mass M with a slope α. The block is connected to the wall through a massless rope and pulley system. Assume all surfaces are smooth. Determine the acceleration of prism M with respect to the ground.
(Figure is the last attached image)

I can draw the force diagram on block m like the first attached image, but I'm not sure about my force diagram for prism M (second attached image). If that's true, then I think the prism acceleration should be:
$$
a_x = \frac{F_x}{M} = \frac{mg \sin{\alpha} \cos{\alpha}}{M} = \frac{m}{M} g\sin{\alpha} \cos{\alpha}
$$
The thing is, I don't know how to justify my force diagram on the prism. Is the contact force on the prism from the block really ## mg \sin{\alpha} \cos{\alpha} ##?
 

Attachments

  • image_2025-07-22_111225360.webp
    image_2025-07-22_111225360.webp
    18.4 KB · Views: 7
  • image_2025-07-22_111705693.webp
    image_2025-07-22_111705693.webp
    13.1 KB · Views: 8
  • image_2025-07-22_112329326.webp
    image_2025-07-22_112329326.webp
    12.7 KB · Views: 16
Physics news on Phys.org
I take it that where you have three arrows in the same colour, two of them are the third resolved into components parallel and normal to the slope.
There are more forces on the prism.
With only the force shown, why doesn’t the prism descend?
What keeps the rope bent?
Wrt the contact force from the block, remember that the block is accelerating too.
 
  • Like
Likes TensorCalculus
haruspex said:
Wrt the contact force from the block, remember that the block is accelerating too.
Well, I'll try.
Assuming the rest reference frame of the floor, if I set the "downhill" acceleration of the block relative to the prism as ##a_b## while the acceleration of the prism as ##a##, then Newton's 2nd law on the block perpendicular to the inclined plane is $$
N - mg \cos{\alpha} = ma \sin{\alpha}
$$ Meanwhile, along the inclined plane: $$
T - mg \sin{alpha} = ma \cos{\alpha} - a_b
$$
As for the prism, Newton's 2nd law along the x-axis (parallel to the floor) is: $$
N \sin{\alpha} = Ma
$$ However, I'm still left with T, and I don't think using Newton's 2nd law for the prism along the y-axis is going to help (not that I'm sure this one is correct): $$
N \cos{\alpha} + Mg = N_{pf}
$$
Now, I've been looking up solutions online, and I found a useful constraint; the length of the rope is constant, meaning the total rope length on the left side of the pulley (let's say l1) and its right side (say, l2) should be constant: $$
\begin{align}
l_1 + l_2 &= l \nonumber \\
\frac{dl_1}{dt} + \frac{dl_2}{dt} &= 0 \nonumber \\
a_b - a &= 0 \nonumber
\end{align}
$$
I've been thinking of using Newton's 2nd law on the block and the prism as a system, but I'm not sure how. Can I put ##T## on the right side of the pulley as an external force that works on the system?
 
Patrick Herp said:
Well, I'll try.
Assuming the rest reference frame of the floor, if I set the "downhill" acceleration of the block relative to the prism as ##a_b## while the acceleration of the prism as ##a##, then Newton's 2nd law on the block perpendicular to the inclined plane is $$
N - mg \cos{\alpha} = ma \sin{\alpha}
$$
Which way are you taking as positive for a?
Patrick Herp said:
Meanwhile, along the inclined plane: $$
T - mg \sin{alpha} = ma \cos{\alpha} - a_b
$$
As for the prism, Newton's 2nd law along the x-axis (parallel to the floor) is: $$
N \sin{\alpha} = Ma
$$ However, I'm still left with T,
As I asked in post #2, what is keeping the rope from straightening?
 
Patrick Herp said:
Well, I'll try.
Assuming the rest reference frame of the floor, if I set the "downhill" acceleration of the block relative to the prism as ##a_b## while the acceleration of the prism as ##a##, then Newton's 2nd law on the block perpendicular to the inclined plane is $$
N - mg \cos{\alpha} = ma \sin{\alpha}
$$
Which way are you taking as positive for a?
Patrick Herp said:
Meanwhile, along the inclined plane: $$
T - mg \sin{alpha} = ma \cos{\alpha} - a_b
$$
As for the prism, Newton's 2nd law along the x-axis (parallel to the floor) is: $$
N \sin{\alpha} = Ma
$$ However, I'm still left with T,
As I asked in post #2, what is keeping the rope from straightening?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top