Calculating Angular Acceleration and Torque in a Rotating Motor System

AI Thread Summary
The discussion focuses on calculating angular acceleration and torque for a motor system modeled as a rotating cylinder. The angular acceleration is determined to be approximately 466.561 rad/s², based on the motor's stepping frequency and time interval. Torque is calculated using the moment of inertia and the derived angular acceleration, resulting in a value of about 2.47837 x 10^-37 N·m. Participants express confusion over the assumption that the motor comes to rest instantly between steps, suggesting that resistance may prevent immediate cessation of motion. The conversation highlights the importance of understanding the dynamics involved in the motor's operation.
helpme101
Messages
4
Reaction score
0

Homework Statement


The rotating subunits forms an approximately cylindrical axel with a diameter of 4 nm and total mass of 80,000 Daltons. The motor takes three steps per revolution with each step taking 0.067 s. We can model the rotating subunits as a rotating cylinder and use the properties described above to calculate:

A. The angular acceleration of the motor during each step (Assume the motor pauses very briefly between steps and therefore starts each step from rest)

B. The torque needed to generate the acceleration calculated in (a). Hint: you will need to determine the moment of inertia first.

Homework Equations


A. Angular acceleration = change in angular velocity/ time interval
Angular velocity = 2 X pi radians X F
F=1/period

B. Torque = rF
Using the answer we found in part A the equation would be: angular acceleration = Torque/mr^2

The Attempt at a Solution


A. Period = 0.067 s X 3 steps = .201 s
Frequency= 1/period = 1/.201s = 4.97512 s^-1
angular velocity = 2 X pi X 4.97512 s-1 = 31.2592 rad s-1
so angular acceleration = 31.2592 rad s-1 / 0.067 s - 0 s = 466.561 rads-2

B. 4nm=.000000004 m = diameter
.000000002 m = radius
80000 Daltons = 1.328 X 10 ^-22 kg

466.561 rad s^-2 = Torque/ (1.328 x 10^-22 kg) (.000000002 m)^2
= 2.47837 x 10^-37 Nxm
 
Physics news on Phys.org
Helllo SOS101 and welcome to PF :smile: !

You have no questions, but I do have a comment:

You treat both angular velocity and angular acceleration as constant. That is strange.
 
BvU said:
Helllo SOS101 and welcome to PF :smile: !

You have no questions, but I do have a comment:

You treat both angular velocity and angular acceleration as constant. That is strange.

I was hoping someone could check over my work. Sounds like I may have done something is wrong?
 
Yes. If the angular acceleration is constant (and it seems the exercise is asking for a number), the angular velocity increases linearly and the angle goes (*) like ##{\textstyle {1\over 2}}\alpha\, t^2##. You have angle and t and can solve for ##\alpha##

(*) same as linear motion with constant acceleration formula ##x = x_0 + v_0 \, t + {\textstyle {1\over 2}}\alpha\, t^2##.
 
BvU said:
Yes. If the angular acceleration is constant (and it seems the exercise is asking for a number), the angular velocity increases linearly and the angle goes (*) like ##{\textstyle {1\over 2}}\alpha\, t^2##. You have angle and t and can solve for ##\alpha##

(*) same as linear motion with constant acceleration formula ##x = x_0 + v_0 \, t + {\textstyle {1\over 2}}\alpha\, t^2##.
I'm not sure if I am understanding. I should do (1/2)(.067s)^2 = alpha?
 
helpme101 said:
(Assume the motor pauses very briefly between steps and therefore starts each step from rest)
I don't understand this part of the problem statement. The motor applies a torque in each step, producing an acceleration. The angular velocity is now nonzero. When the motor rests, it stops applying a torque. Why does that mean the rotor comes to rest? There is no therefore about it. Presumably there is some resistance that the motor has to ovecome, and this will bring it to rest, but it will not come instantly to rest, so we don't know how long the rotation continues or what rate it got up to.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top