Calculating Critical points for multivariable functions.

Click For Summary
The discussion revolves around finding critical points for the function f(x,y) = (1+xy)(x+y). The original poster identifies critical points, including (1,-1) and (-1,1), but also finds two additional points, raising concerns about potential errors in their calculations. A response clarifies that the extra points may result from squaring equations, which can introduce false solutions. It emphasizes the importance of verifying solutions by substituting them back into the original equations. The conversation highlights common pitfalls in solving multivariable calculus problems.
DavidAp
Messages
44
Reaction score
0
I am asked to find all local maximum and minimum points for the function,
f(x,y) = (1+xy)(x+y)
so, naturally, I had to find the critical points. However, in the back of my book (Calculus Early Transcendentals 6E, James Stewart) the only critical points are (1,-1) (-1,1) (both of which are saddle points but that's not what's important).

My question is, what did I do wrong in my mathematics? I am getting two extra sets of critical points and I'm wondering: did the book forget to mention them as possible points or did I mess up during the calculations? Probably the latter but I checked my math twice, the second time on the board.

I took a picture of my math because it seemed so much easier. Hopefully my hand writing is legible and the picture is big enough.

My critical points are (1,-1) (-1,1) (-2/6, 10/6) (10/6, -2/6)
If the image is illegible please tell me and I will type it all out on text.

x4riu9.jpg


Thank you for reviewing my question, I greatly appreciate it.
 
Physics news on Phys.org
f_x = 1+y^2+2xy = 1-x^2 + (x+y)^2, and f_y = 1 - y^2 + (x+y)^2, so if we set s = x+y we have x = +-sqrt(1+s^2) and y = +-sqrt(1+s^2). If we take both + roots (so x,y>0) we have x = y and so s=2x and x = sqrt(1+4x^2), which is impossible. Similarly, we cannot take both - roots, so must take one + and one -. That makes s = 0, and so x = +-1, y = -+1: (1,-1) or (-1,1). Your squarings, etc., have introduced spurious roots (or more precisely, things that are not roots at all). After getting an alleged 'solution' you must always plug it back into the equations (the _original_ ones, not the squared versions) to check if they work.

RGV
 
Last edited:
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K