MHB Calculating M and the Unit Digit of M^2003

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Unit
AI Thread Summary
The discussion revolves around calculating the value of M defined as M = (3x - 1)/(1 + x) - (√|x| - 2 + √(2 - |x|))/(|2 - x|). It is determined that x must be -2, leading to M being calculated as 7. The unit digit of M^2003 is found by evaluating M^3 mod 10, resulting in a unit digit of 3. The calculations involve modular arithmetic, specifically noting that M^4 ≡ 1 mod 10. The conversation also includes appreciation for problem-solving and contributions to mathematical discussions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $$x$$ be a real number and let $$M=\frac{3x-1}{1+x}-\frac{\sqrt{\mid x\mid-2}+\sqrt{2-\mid x \mid}}{\mid 2-x \mid}$$.

Find $$M$$ and also the unit digit of $$M^{2003}$$.
 
Mathematics news on Phys.org
anemone said:
Let $$x$$ be a real number and let $$M=\frac{3x-1}{1+x}-\frac{\sqrt{\mid x\mid-2}+\sqrt{2-\mid x \mid}}{\mid 2-x \mid}$$.

Find $$M$$ and also the unit digit of $$M^{2003}$$.
Just a moment and I'll have it. I just have to program Excel...

-Dan
 
anemone said:
Let $$x$$ be a real number and let $$M=\frac{3x-1}{1+x}-\frac{\sqrt{\mid x\mid-2}+\sqrt{2-\mid x \mid}}{\mid 2-x \mid}$$.

Find $$M$$ and also the unit digit of $$M^{2003}$$.

We are taking square root of |x| - 2 and its –ve so it has to be zero
So |x| - 2 = 0 or x = 2 or – 2
x cannot be 2 as |2-x| is in denominator
so x = - 2
hence putting the value x = -2 we get M = 7
as M^4 = 1 mod 10
M^2000 = 1 mod 10 or M^2003 = M^3 mod 10 = 343 mod 10 or 3
3 is the unit digit
 
kaliprasad said:
We are taking square root of |x| - 2 and its –ve so it has to be zero
So |x| - 2 = 0 or x = 2 or – 2
x cannot be 2 as |2-x| is in denominator
so x = - 2
hence putting the value x = -2 we get M = 7
as M^4 = 1 mod 10
M^2000 = 1 mod 10 or M^2003 = M^3 mod 10 = 343 mod 10 or 3
3 is the unit digit

Hi kaliprasad,

Thanks for taking the time to participate in this challenge problem and I can tell how much you enjoyed working with some of the problems that I posted here and in case if you have any interesting mathematics problems to share with us, please feel free to do so! :o:p

topsquark said:
Just a moment and I'll have it. I just have to program Excel...

-Dan

Hi Dan,

Thank you for the reply and you know what, you're one of the clever $$\cap$$ humorous member at MHB!:cool:
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top