MHB Calculating New Emission Rate of Radioactive Source

AI Thread Summary
The discussion centers on calculating the new emission rate of a radioactive source that initially emits particles at a rate of 1 per second, with emissions following a Poisson distribution. It is established that the probability of 0 or 1 emission in 4 seconds is 0.8, leading to the calculation of the new rate, which is approximately 0.206 emissions per second. The calculation involves using the Poisson probability formula, resulting in a new average of 0.824 emissions in 4 seconds. Participants also discuss methods for arriving at this value, including the use of online calculators and Poisson distribution tables. The conversation highlights the mathematical approach to determining changes in emission rates.
araz1
Messages
9
Reaction score
0
A radioactive source emits particles at an average rate of 1 pe second. Assume that the number of emissions follows a Poisson distribution. The emission rate changes such that the probability of 0 or 1 emission in 4 seconds becomes 0.8. What is the new rate? Thanks.
 
Mathematics news on Phys.org
araz said:
A radioactive source emits particles at an average rate of 1 pe second. Assume that the number of emissions follows a Poisson distribution. The emission rate changes such that the probability of 0 or 1 emission in 4 seconds becomes 0.8. What is the new rate? Thanks.

Hi araz, welcome to MHB! ;)

We have:
$$P(\text{0 or 1 emission in 4 seconds})=0.8 \\ \implies
P(\text{0 emission in 4 seconds}) + P(\text{1 emission in 4 seconds}) = \frac{\lambda^0 e^{-\lambda}}{0!} + \frac{\lambda^1 e^{-\lambda}}{1!} = (1+\lambda)e^{-\lambda} = 0.8 \\ \implies
\lambda \approx 0.824
$$
So the average number of emissions in 4 seconds is $0.824$, which is $0.206$ per second.
 
Klaas van Aarsen said:
Hi araz, welcome to MHB! ;)

We have:
$$P(\text{0 or 1 emission in 4 seconds})=0.8 \\ \implies
P(\text{0 emission in 4 seconds}) + P(\text{1 emission in 4 seconds}) = \frac{\lambda^0 e^{-\lambda}}{0!} + \frac{\lambda^1 e^{-\lambda}}{1!} = (1+\lambda)e^{-\lambda} = 0.8 \\ \implies
\lambda \approx 0.824
$$
So the average number of emissions in 4 seconds is $0.824$, which is $0.206$ per second.

Thank you Klaas. Did you use guess and check or numerical methods to get 0.824?
Regards
 
araz said:
Thank you Klaas. Did you use guess and check or numerical methods to get 0.824?
Regards

I used an online calculator to find it.
Alternatively guessing can work, or we can look it up in a Poisson distribution table.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top