Orion1
- 961
- 3
This is my equation for the Universe mass based upon the Lambda-CDM model parameters and the Hubble Space Telescope (HST) and WMAP observational parameters in SI units.
Observable Universe mass composition:
H_0 = 2.32987690448613 \cdot 10^{- 18} \; \text{s}^{- 1} - Hubble parameter (WMAP)
\Omega_b = 0.00444 - Baryon density
\Omega_{dm} = (\Omega_m - \Omega_b) = 0.2216 - dark matter density
dN_s = 10^{22} - HST observable stellar number
dV_s = 3.3871 \cdot 10^{78} \; \text{m}^3 \; \; \; (4 \cdot 10^{30} \; \text{ly}^3) - HST observable stellar volume
M_{\odot} = 1.9891 \cdot 10^{30} \; \text{kg} - solar mass
Observable Universe mass:
\boxed{M_u = \frac{4 \pi M_{\odot}}{3 \Omega_b} \left( \frac{dN_s}{dV_s} \right) \left( \frac{c}{H_0} \right)^3}
\boxed{M_u = 1.18029735794067 \cdot 10^{55} \; \text{kg}}
Gravitationally observable dark matter mass:
\boxed{M_{dm} = \frac{4 \pi M_{\odot}}{3} \left( \frac{\Omega_{dm}}{\Omega_b} \right) \left( \frac{dN_s}{dV_s} \right) \left( \frac{c}{H_0} \right)^3}
\boxed{M_{dm} = 2.61553894519654 \cdot 10^{54}}
Hubble critical mass:
\boxed{M_c = \frac{c^3}{2 G H_0}}
\boxed{M_c = 8.66352589042757 \cdot 10^{52} \; \text{kg}}
[/Color]
Reference:
"[URL law - Wikipedia[/URL]
http://en.wikipedia.org/wiki/Lambda-CDM_model"
http://en.wikipedia.org/wiki/Universe"
http://en.wikipedia.org/wiki/Observable_universe"
http://en.wikipedia.org/wiki/Dark_matter"
Last edited by a moderator: