Calculating Observable Universe Mass in the Lambda-CDM Model

  • Thread starter Thread starter Orion1
  • Start date Start date
  • Tags Tags
    Mass Universe
AI Thread Summary
The discussion focuses on calculating the mass of the observable universe using the Lambda-CDM model, with parameters derived from the Hubble Space Telescope and WMAP observations. The calculated observable universe mass is approximately 1.048 x 10^55 kg, while the gravitationally observable dark matter mass is about 2.323 x 10^54 kg. The Hubble critical mass is determined to be around 8.664 x 10^52 kg, indicating that the observable universe mass exceeds this critical threshold. The implications of this finding for cosmological theories are questioned, and the author seeks peer review for their equations and calculations. The discussion emphasizes the need for validation of these calculations within the scientific community.
Orion1
Messages
961
Reaction score
3

This is my equation for the Universe mass based upon the Lambda-CDM model parameters and the Hubble Space Telescope (HST) and WMAP observational parameters in SI units.

Observable Universe mass composition:
H_0 = 2.32987690448613 \cdot 10^{- 18} \; \text{s}^{- 1} - Hubble parameter (WMAP)
\Omega_b = 0.00444 - Baryon density
\Omega_{dm} = (\Omega_m - \Omega_b) = 0.2216 - dark matter density
dN_s = 10^{22} - HST observable stellar number
dV_s = 3.3871 \cdot 10^{78} \; \text{m}^3 \; \; \; (4 \cdot 10^{30} \; \text{ly}^3) - HST observable stellar volume
M_{\odot} = 1.9891 \cdot 10^{30} \; \text{kg} - solar mass

Observable Universe mass:
\boxed{M_u = \frac{4 \pi M_{\odot}}{3 \Omega_b} \left( \frac{dN_s}{dV_s} \right) \left( \frac{c}{H_0} \right)^3}

\boxed{M_u = 1.18029735794067 \cdot 10^{55} \; \text{kg}}

Gravitationally observable dark matter mass:
\boxed{M_{dm} = \frac{4 \pi M_{\odot}}{3} \left( \frac{\Omega_{dm}}{\Omega_b} \right) \left( \frac{dN_s}{dV_s} \right) \left( \frac{c}{H_0} \right)^3}

\boxed{M_{dm} = 2.61553894519654 \cdot 10^{54}}

Hubble critical mass:
\boxed{M_c = \frac{c^3}{2 G H_0}}
\boxed{M_c = 8.66352589042757 \cdot 10^{52} \; \text{kg}}
[/Color]
Reference:
"[URL law - Wikipedia[/URL]
http://en.wikipedia.org/wiki/Lambda-CDM_model"
http://en.wikipedia.org/wiki/Universe"
http://en.wikipedia.org/wiki/Observable_universe"
http://en.wikipedia.org/wiki/Dark_matter"
 
Last edited by a moderator:
Space news on Phys.org

Correction, the Baryon density listed in post #1 is the stellar Baryon density, not the total Baryon density.
[/Color]
The stellar Baryon density ranges between:
\Omega_s = \int_{0.004}^{0.005}
[/Color]
 
Last edited:

\Omega_s = 0.005 - stellar Baryon density

Observable Universe mass:
\boxed{M_u = \frac{4 \pi M_{\odot}}{3 \Omega_s} \left( \frac{dN_s}{dV_s} \right) \left( \frac{c}{H_0} \right)^3}

\boxed{M_u = 1.04810405385132 \cdot 10^{55} \; \text{kg}}

Gravitationally observable dark matter mass:
\boxed{M_{dm} = \frac{4 \pi M_{\odot}}{3} \left( \frac{\Omega_{dm}}{\Omega_s} \right) \left( \frac{dN_s}{dV_s} \right) \left( \frac{c}{H_0} \right)^3}

\boxed{M_{dm} = 2.32259858333452 \cdot 10^{54} \; \text{kg}}

Hubble critical mass:
\boxed{M_c = \frac{c^3}{2 G H_0}}

\boxed{M_c = 8.66352589042757 \cdot 10^{52} \; \text{kg}}
[/Color]
 

Observable Universe mass greater than or equal to Hubble critical mass:
\boxed{M_u \geq M_c}

\boxed{\frac{4 \pi M_{\odot}}{3 \Omega_s} \left( \frac{dN_s}{dV_s} \right) \left( \frac{c}{H_0} \right)^3 \geq \frac{c^3}{2 G H_0}}

Observable Universe mass equivalent to Hubble critical mass:
\boxed{M_u = M_c}

\frac{4 \pi M_{\odot}}{3 \Omega_s} \left( \frac{dN_s}{dV_s} \right) \left( \frac{c}{H_0} \right)^3 = \frac{c^3}{2 G H_0}

Observable critical stellar Baryon density:
\boxed{\Omega_s = \frac{8 \pi G M_{\odot}}{3 H_0^2} \left( \frac{dN_s}{dV_s} \right)}

\boxed{\Omega_s = 0.604894627838177}

Total matter density:
\Omega_m = 0.266

According to my calculations, the observable Universe mass is greater than the Hubble critical mass.

What exactly are the cosmological theoretical implications for this criteria?
[/Color]
 
Last edited:

Observable stellar Baryon critical density:
\Omega_s = 0.604894627838177

Observable cosmological critical density:
\Omega_{\Lambda} = 0.7
[/Color]
Reference:
http://en.wikipedia.org/wiki/Lambda-CDM_model"
 
Last edited by a moderator:
Why don't you google 'Hubble critical mass' and publish 'your' results in an article?
 

malawi_glenn said:
Why don't you google 'Hubble critical mass' and publish 'your' results in an article?

All my equations require proofreading by a peer review, prior to any publication.

According to my calculations, the observable Universe mass is greater than the Hubble critical mass.

What exactly are the theoretical cosmological implications for this criteria?

Are my equations and calculations correct?
[/Color]
 
Last edited:
Back
Top