Calculating percentile ranks of a Gaussian distribution

dwilkerson
Messages
16
Reaction score
0
I have been calibrating a sub-micron particle sizer with 1 um (1000 nm) standard.

After testing the standard, the test results on my print-out:

(X25 = 812.7 nm, X50 = 977.7 nm, X90 = 1389.0 nm)

According to USP, the limits are +/- 6% of the reference standard values for X25, X50, and X90.

EDIT: I called the company who made the reference standard and they won't give me these percentile ranks...

Now I've been asked to find the X25, X50, and X90 values of the reference standard Guassian curve that has a median of 1000 nanometers.

I can't seem to figure this out.. Sorry if this is confusing, I can add more information if needed.

Thanks, David
 
Last edited:
Physics news on Phys.org
dwilkerson said:
I have been calibrating a sub-micron particle sizer with 1 um (1000 nm) standard.

After testing the standard, the test results on my print-out:

(X25 = 812.7 nm, X50 = 977.7 nm, X90 = 1389.0 nm)

To understand this as a practical problem, it would be necessary to understand whether this printout is a measurement of one particular particle taken many times or whether it is from a set of measurements taken on a large number of particles - or some other combination of different particles and measurements.

According to USP, the limits are +/- 6% of the reference standard values for X25, X50, and X90.

EDIT: I called the company who made the reference standard and they won't give me these percentile ranks...

I, myself, don't know what "USP" means.

Now I've been asked to find the X25, X50, and X90 values of the reference standard Guassian curve that has a median of 1000 nanometers.

It isn't clear what you've been asked to do. Are you to assume that the measurements that you took are good data for estimating the standard deviation of the Gaussian curve for a reference with a median of 1000? An estimate of the standard deviation would let you estimate the whole curve.
 
Stephen Tashi said:
To understand this as a practical problem, it would be necessary to understand whether this printout is a measurement of one particular particle taken many times or whether it is from a set of measurements taken on a large number of particles - or some other combination of different particles and measurements.


The reference standard are polystyrene spheres in a matrix solution. These are diluted in sterile water for injection and measured with laser diffraction instrument (particle sizer). The printout consists of multiple measurements (over the coarse of about 1 minute) from a multiple particles (ref. standard).



I, myself, don't know what "USP" means.


U.S. Pharmacopeia, it's just a huge list of rules for testing chemicals in the medical field. Every year they update their rules.


It isn't clear what you've been asked to do. Are you to assume that the measurements that you took are good data for estimating the standard deviation of the Gaussian curve for a reference with a median of 1000? An estimate of the standard deviation would let you estimate the whole curve.

Usually the manufacturer only gives the median value which is always 1000nm. Now the USP states that reference standard must have x25, x50, and x90 values +/- 6% from the test sample. Since they won't give me their values, I must estimate what the reference standard values are. I'm not sure if there's a way to do this since I don't really have their standard deviation... I know that my printout show 0.225 standard deviation so I could at least use that?
Thanks, David
 
Usually the manufacturer only gives the median value which is always 1000nm. Now the USP states that reference standard must have x25, x50, and x90 values +/- 6% from the test sample. Since they won't give me their values, I must estimate what the reference standard values are

The values you measured are the best estimates you have for those percentiles. If you create another set of numbers by revising the X50 value to be exactly 1000, you are assuming that this improves your estimates because your measuring device has a constant bias. Do you really think that's the case?
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top