Calculating Sliding Friction Coefficient (μ) for Car on Icy Road

  • Thread starter Thread starter lim
  • Start date Start date
  • Tags Tags
    Friction Sliding
AI Thread Summary
The discussion revolves around calculating the coefficient of sliding friction (μ) for a car skidding on an icy road. The car, weighing 2090 kg and traveling at 22.2 m/s, comes to a stop after sliding 64.9 m, leading to the calculation of acceleration as -3.796 m/s². The correct formula for μ is derived as μ = a/g, resulting in a coefficient of friction of 0.378. Clarifications are made regarding the use of force equations and the interpretation of negative values in the context of friction. The final conclusion is that the coefficient of friction is 0.378, emphasizing the importance of considering only positive values in this calculation.
lim
Messages
19
Reaction score
0

Homework Statement



You are driving a 2090 kg car at a constant speed of 22.2 m/s along an icy, but straight and level road. While approaching a traffic light, it turns red. You slam on the breaks. Your wheels lock, the tires begin skidding, and the car slides to a halt in a distance of 64.9 m. What is the coefficient of sliding friction (μ) between your tires and the icy roadbed?


Homework Equations



vf^2=vi^2=2ax
F=ma

The Attempt at a Solution



vf^2=vi^2=2ax
0= 22.2^2+2a64.9
a=-3.796 m/s^2

F= sum of forces/ W
= -3.796(2090)/2090(9.8)
= -.387
?

help appreciated
 
Physics news on Phys.org
Frictional force = (mu)*N, so (mu)= F/(mg)

Why have you written F= sum of forces/W?

What is actually the magnitude of that thing which you are calling F?
 
It meant sigmaF=ma/mg. I put w, becuase w=mg. The magnitude of F, force was 3.796(2090)=7933.64 N. Is my method incorrect? I was trying to find the acceleration and use F=ma, and then I use (mu)= F/(mg).
 
Sum of forces = ma. That's all. Here, F=ma, where F is the force of friction.

ma= F= (mu)N = (mu)W = (mu)mg.

So, (mu) = (ma)/(mg) = a/g.

What you've found is the value of the co-eff of friction, with a -ve sign.
 
Just for understanding, Why isn't the value negative or why would it be the magnitude? Is it because friction is slowing down so it would always be a negative number?
 
The co-eff of friction is defined to be the ratio between the magnitudes of the frictional force and the normal reaction. So, we’ll consider only the positive value of the frictional force, and so the co-eff will always be a +ve number.

Upto finding ‘a’, you were correct. After that, you have written F= sum of forces/w, which is wrong.

What you should write is (mu)=F/N=ma/(mg)=a/g=0.378.

(Unknowingly, what you have calculated is nothing but Force/Normal Reaction, so you have actually calculated the value of the co-eff itself. But you have taken the force to be negative. That’s why I said it’s that value with a –ve sign.)

The answer is that the co-eff of friction is 0.378.

Is it clear now?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top