The area is 4 pi M, approximately 12.56637062*M
For completeness sake:
The radial distance for an stationary observer between r1 and r2 is:
<br />
\sqrt {r_{{2}} \left( r_{{2}}-2\,M \right) }-\sqrt {r_{{1}} \left( r_{<br />
{1}}-2\,M \right) }+2\,M\ln \left( {\frac {\sqrt {r_{{2}}}+\sqrt {r_{<br />
{2}}-2\,M}}{\sqrt {r_{{1}}}+\sqrt {r_{{1}}-2\,M}}} \right) <br />
The volume between r1 and r2 is :
<br />
4/3\,\pi \,\sqrt {{r_{{2}}}^{5} \left( r_{{2}}-2\,M \right) }+10/3\,<br />
\pi \,M\sqrt {{r_{{2}}}^{3} \left( r_{{2}}-2\,M \right) }+10\,\pi \,{M<br />
}^{2}\sqrt {r_{{2}} \left( r_{{2}}-2\,M \right) }+20\,\pi \,{M}^{3}<br />
\ln \left( 1/2\,{\frac {r_{{2}}}{M}}+1/2\,\sqrt {2\,{\frac {r_{{2}}}{<br />
M}}-4} \right) -4/3\,\pi \,\sqrt {{r_{{1}}}^{5} \left( r_{{1}}-2\,M<br />
\right) }-10/3\,\pi \,M\sqrt {{r_{{1}}}^{3} \left( r_{{1}}-2\,M<br />
\right) }-10\,\pi \,{M}^{2}\sqrt {r_{{1}} \left( r_{{1}}-2\,M<br />
\right) }-20\,\pi \,{M}^{3}\ln \left( 1/2\,{\frac {r_{{1}}}{M}}+1/2<br />
\,\sqrt {2\,{\frac {r_{{1}}}{M}}-4} \right) <br />
The Latex is cut off, but if you click on it you get the complete formula. I do not know how to use line breaks as the standard \\ does not seem to work, perhaps a moderator could help.
These formulas work up to and including the EH. There are other formulas that work passed the EH but only up to and not including r=0.