MHB Calculating the effect of an operator on an arbitrary state

  • Thread starter Thread starter Fantini
  • Start date Start date
  • Tags Tags
    Operator State
Fantini
Gold Member
MHB
Messages
267
Reaction score
0
Hello. I need help with the following:

Suppose a basis set of states $\varphi_i$. Calculate the effect of the operator $\widehat{R} \equiv \Pi_i \left( \widehat{Q} -q_i \right)$ on an arbitrary state $\Psi$, assuming that the equation $\widehat{Q} \varphi_i = q_i \varphi_i$ is satisfied.

I'm convinced that the answer is zero, but I don't know how to manipulate the indices to reflect that. I've calculated explicitly the cases for $n=2$ and $n=3$.
 
Mathematics news on Phys.org
Hi Fantini,

It may help to note that all of the operators $Q-q_{i}$ commute; i.e.
$$(Q-q_{i})(Q-q_{j})=(Q-q_{j})(Q-q_{i})$$
If we use this observation, I think we can avoid dealing with messy indices.

Does this help move things in the right direction? Let me know if anything is unclear/not quite right.
 
Hi GJA. This doesn't really point me somewhere. I'm still lost at how to do the abstract computation. I'm conjecturing the result holds only for a finite index.
 
You can write
$$\Psi=\sum_{j=1}^{\infty}a_j \, \varphi_j,$$
since $\{\varphi_j\}$ is a basis. Then compute
$$\hat{R} \, \Psi=\prod_{i=1}^{\infty}(\hat{Q}-q_i) \sum_{j=1}^{\infty}a_j \, \varphi_j.$$
Can you continue?
 
No, I can't. I tried that, but I don't know how to actually perform the product/distribution to show that it equals zero.
 
Ok, so we get
\begin{align*}
\hat{R} \, \Psi&=\prod_{i=1}^{\infty}(\hat{Q}-q_i) \sum_{j=1}^{\infty}a_j \, \varphi_j \\
&= \sum_{j=1}^{\infty}a_j \, \prod_{i=1}^{\infty}(\hat{Q}-q_i)\varphi_j \\
&=\sum_{j=1}^{\infty}a_j \, \prod_{i=1}^{\infty}(\hat{Q} \,\varphi_j-q_i \, \varphi_j) \\
&=\sum_{j=1}^{\infty}a_j \, \prod_{i=1}^{\infty}(q_j \,\varphi_j-q_i \, \varphi_j) \\
&=\sum_{j=1}^{\infty}\prod_{i=1}^{\infty}(q_j -q_i ) \, a_j \, \varphi_j.
\end{align*}
This all assumes the necessary convergence so that we can switch the order of operations. Does the result look like zero?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top