Calculating the travel time in relativistic travel

rhz_prog
Messages
16
Reaction score
0
A spaceship with empty mass MSS(?kg), start its journey from A to B which distance is RAB(?ly). The amount of fuel the spaceship
initially carry is MFUEL(?kg), which energy per mass is EPM (?Joule/kg). The spaceship engine efficiency is SEP (?%), and the engine is capable of burning FPS (?kg/s) mass of fuel per second. If the interstellar medium friction constant is IMD (?/s), calculate :

1. The maximum cruising speed ? (SRF and IRF)
2. Length of acceleration and deceleration phase ? (SRF and IRF)
3. Length of constant cruising speed ? ( I expect it to be harder if
there is IMD ). (SRF and IRF)
4. The heat generated by friction ?
5. How the question may look like if we add the energy required to
support the crew which is ESC (Watt) into the problem ?

SRF = Ship's Reference Frame
IRF = Inertial Reference Frame
 
Physics news on Phys.org
Here is where my math work had progressed so far :

Look in the variable definition above, in order to understand what
each variables in the equations below means.

So SSP = SEP*EPM*FPS ... (1)

Since (SSP=Space Ship Power) is defined as, the amount of energy the
space ship is capable of produce per unit of time, and energy means
the capability to move a mass M as far as H, using certain amount of
acceleration A, that means :

SSP = TMAR*A*H/dt = 0.5*TMAR*A^2*t ... (2)

TMAR : Total Mass After Relativity.

Which is defined as :

TMAR = TMBR/sqrt(1-(v/c)^2) ... (3)

TMBR = MSS + MFUEL - FPS*t ... (4)

TMAR : Total Mass Before Relativity.

So, I subtitute SSP from (1) to (2) :

SEP*EPM*FPS = 0.5*TMAR*A^2*t , move A^2 from right hand side to left
hand side :
A^-2*SEP*EPM*FPS = 0.5*TMAR*t, move SEP*EPM*FPS from left hand side
to right hand side :

A^-2 = (0.5*TMAR*t) / (SEP*EPM*FPS) , flip both side

A^2 = (SEP*EPM*FPS) / (0.5*TMAR*t) ... (5)

Then I subtitute TMBR from (4) to (3) :

TMAR = (MSS + MFUEL - FPS*t)/sqrt(1-(v/c)^2) ... (6)

Then I subtitute TMAR from (6) to (5) :

A^2 = (SEP*EPM*FPS) / (0.5*(MSS + MFUEL - FPS*t)/sqrt(1-(v/c)^2)*t)

A^2 = (SEP*EPM*FPS* sqrt(1-(v/c)^2)) / (0.5*(MSS + MFUEL - FPS*t)*t)

A = sqrt((SEP*EPM*FPS* sqrt(1-(v/c)^2)) / (0.5*(MSS + MFUEL -
FPS*t)*t))

Since A = dv(t)/dt, the problem become this differential equation :

dv(t)/dt = sqrt((SEP*EPM*FPS* sqrt(1-(v(t)/c)^2)) / (0.5*(MSS + MFUEL
- FPS*t)*t))

Written down in Maple Format :

diff(v(t),t) = sqrt((SEP*EPM*FPS* sqrt(1-(v(t)/c)^2)) / (0.5*(MSS +
MFUEL - FPS*t)*t));

So, did I do something wrong ?
Where should I put the IMD (Interstellar Medium Friction Constant (?/s)) into the equation ?
Is there a way to integrate the differential equation ?
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top