Calculating Time of Flight & Velocity of a Ball Thrown Upwards

AI Thread Summary
The discussion revolves around calculating the time of flight and velocity of a ball thrown upwards, focusing on both vertical and horizontal components of motion. Initial calculations for vertical velocity (V1y) yielded -6.566 m/s, and the time of flight was initially calculated as 1.34 seconds. Participants clarified that the initial velocity (vi) should be consistent across different angles, with a confirmed value of 6.6 m/s. The horizontal velocity was calculated using the cosine of the launch angle, leading to a time of flight of approximately 1.09 seconds. The conversation concluded with a reminder about maintaining proper thread titles in homework help forums.
crism7
Messages
8
Reaction score
1
Homework Statement
.
Relevant Equations
.
Vertical components:
dy = 0m
ay = 9.8m/s^2 [down]
t = 1.34s
V1y = required
V2y = 0

i first tried to find V1y
dy =vi t + 1/2 a t^2
and got V1y = -6.566

then i solved for time of flight
dy =vi t + 1/2 a t^2
0 = -6.566t + 4/9t^2
and for 1.34 seconds

does this mean the time of flight is the same when the ball is thrown directly upwards??
is this correct, I'm not sure where to begin when solving this problem
 
Physics news on Phys.org
You haven't considered the horizontal motion.
 
  • Like
Likes bob012345
Mister T said:
You haven't considered the horizontal motion.
dx = 4.14 m
Vx = 8.02cos55 = 4.6 m/s
t = required

t = d/v
t = 4.14 / 4.6
t = 0.9 s

??
 
crism7 said:
dx = 4.14 m
Vx = 8.02cos55 = 4.6 m/s
t = required

t = d/v
t = 4.14 / 4.6
t = 0.9 s

??
How did you get ##v = 8.02 m/s##?
 
PeroK said:
How did you get ##v = 8.02 m/s##?
vi = v1y / sin55
vi = -6.566 / 0.819152
vi = 8.02
 
crism7 said:
vi = v1y / sin55
vi = -6.566 / 0.819152
vi = 8.02
Okay, if you fire the projectile straight up, then the initial velocity is ##6.6 \ m/s##. That's correct.

And, you are assuming that for any angle, the vertical component of velocity is ##6.6 \ m/s##?

The problem with that is if you fire the projectile at ##1## degree above the horizontal and its vertical component remains ##6.6 \ m/s##, then its total speed is ##435 m/s##, which is faster than the speed of sound! Unlikely for a foam popper!

You should assume instead that the total velocity is the same for the popper and the horizontal and vertical components vary according to the angle of launch.
 
so the ball thrown upwards and the foam ball launched at an angle must have the same initial velocity of 6.6m/s?

dx = 4.14 m
Vx = 6.6m/s
t = required

and then solve for t?
 
crism7 said:
so the ball thrown upwards and the foam ball launched at an angle must have the same initial velocity of 6.6m/s?

dx = 4.14 m
Vx = 6.6m/s
t = required

and then solve for t?
The first time you had ##v_y = 6.6 \ m/s##. This time you have ##v_x = 6.6 \ m/s##. Neither of those represent ##v_i = 6.6 \ m/s##.
 
PeroK said:
The first time you had ##v_y = 6.6 \ m/s##. This time you have ##v_x = 6.6 \ m/s##. Neither of those represent ##v_i = 6.6 \ m/s##.
i need to find Vi? because the horizontal and vertical velocities are different? and then find the horizontal velocity with vi cos 55, and then solve for time of flight using t = d/v?
 
  • #10
crism7 said:
i need to find Vi?
You already did. And, I've confirmed it. ##v_i = 6.6 \ m/s##. That's how fast the foam popper fires things.
crism7 said:
because the horizontal and vertical velocities are different?
They depend on the angle.
crism7 said:
and then find the horizontal velocity with vi cos 55, and then solve for time of flight using t = d/v?
Yes.
 
  • #11
t = 4.14 m / 6.6cos55
t = 4.14 / 3.785604
t = 1.09

therefore the time of flight is 1.2s?
also, thank you so much for your help!
 
  • #12
crism7 said:
t = 1.09

therefore the time of flight is 1.2s?
This confuses me. ##1.09 \ne 1.2##
 
  • #13
1.1 :']
 
  • Like
Likes PeroK
  • #14
crism7 said:
Homework Statement:: .
Relevant Equations:: .

Vertical components:
dy = 0m
ay = 9.8m/s^2 [down]
t = 1.34s
V1y = required
V2y = 0

i first tried to find V1y
dy =vi t + 1/2 a t^2
and got V1y = -6.566

then i solved for time of flight
dy =vi t + 1/2 a t^2
0 = -6.566t + 4/9t^2
and for 1.34 seconds

does this mean the time of flight is the same when the ball is thrown directly upwards??
is this correct, I'm not sure where to begin when solving this problem
It appear that you have a habit of deleting your thread title after you have received help on your homework. This thread is now locked. Please check your PMs -- we do not tolerate that type of behavior in our Homework Help forums.
 
  • #15
And a descriptive thread title has been restored on your thread to help any searches by your instructors. Have a nice day.
 
Back
Top