Calculating Velocity at any given point in an orbit

AI Thread Summary
To calculate the velocity at any point in an orbit, the discussion begins with the parametric equations for an ellipse, x = a*cos(t) and y = b*sin(t). The derivatives x' and y' are computed to find the overall velocity, leading to the equation V = sqrt( (-a*sin(t))^2 + (b*cos(t))^2). However, a participant points out that the initial parameterization is not the most general, suggesting the use of a function f(t) for angular velocity. The conversation emphasizes the importance of considering angular momentum and energy conservation for accurate calculations in orbital mechanics.
relativitydude
Messages
70
Reaction score
0
Hello,

I'm trying to really understand orbits. I want to be able to calculate the velocity at any given point in an orbit.

Now, parametrically an ellipse can be:

x = a*cos(t)
y = b*sin(t)

If those are position, can I take the derivative to obtain velocity?

x' = -a*sin(t)
y' = b*cos(t)

For the overall velocity:

V = sqrt( (-a*sin(t))^2 + (b*cos(t))^2)

However, there is a pesky t in there, now I use:

x' = -a*sin(t)

Solve for t

-x'/a = sin(t)
asin(-x'/a) = t

And subsitute t back into overall equation? Does this make sense or am I just making stuff up?
 
Physics news on Phys.org
relativitydude said:
Hello,

I'm trying to really understand orbits. I want to be able to calculate the velocity at any given point in an orbit.

Now, parametrically an ellipse can be:

x = a*cos(t)
y = b*sin(t)

If those are position, can I take the derivative to obtain velocity?

x' = -a*sin(t)
y' = b*cos(t)

For the overall velocity:

V = sqrt( (-a*sin(t))^2 + (b*cos(t))^2)

However, there is a pesky t in there, now I use:

x' = -a*sin(t)

Solve for t

-x'/a = sin(t)
asin(-x'/a) = t

And subsitute t back into overall equation? Does this make sense or am I just making stuff up?

From your equations, you have computed the speed
V = sqrt( (-a*sin(t))^2 + (b*cos(t))^2).
Since
x = a*cos(t)
y = b*sin(t)
then
(x/a) = cos(t)
(y/b) = sin(t).
So,
V = sqrt( (-a*(y/b))^2 + (b*(x/a))^2).
 
I was going for in only for terms of x, to disclude y

Is it valid how you subsituted the original x and y, but not the differentiated ones?
 
Last edited:
relativitydude said:
I was going for in only for terms of x, to disclude y

Is it valid how you subsituted the original x and y, but not the differentiated ones?

I believe it's fine.

Continuing on...
(x/a) = cos(t)
(y/b) = sin(t)
means that
(x/a)^2+(y/b)^2=1
which can be solved for (y/b)^2.
That expression can then be inserted in the speed expression I derived, yielding an expression for the speed in terms of x... if that's what you really want.
 
relativitydude said:
Hello,

I'm trying to really understand orbits. I want to be able to calculate the velocity at any given point in an orbit.

Now, parametrically an ellipse can be:

x = a*cos(t)
y = b*sin(t)

If those are position, can I take the derivative to obtain velocity?

x' = -a*sin(t)
y' = b*cos(t)

For the overall velocity:

V = sqrt( (-a*sin(t))^2 + (b*cos(t))^2)

However, there is a pesky t in there, now I use:

x' = -a*sin(t)

Solve for t

-x'/a = sin(t)
asin(-x'/a) = t

And subsitute t back into overall equation? Does this make sense or am I just making stuff up?


Your very first step is wrong :-( You've parameterized an ellipse, but it's not the most general possible parameterization, which is

x = a cos(f(t))
y = b sin(f(t))

where f(t) can be any function.

then dx/dt = -a sin(f(t)) df/dt, dy/dt = b cos(f(t)) df/dt

The correct parameterization will sweep out equal areas in equal times (Kepler's law - this conserves angular momentum), so the angular velocity will be inversely proportional to the radius. Your equation has the angular velocity as being constant, which is wrong.

You should be able to work the problem out more simply, by taking advantage of the fact that angular momentum and energy are both conserved.
 
nicely done my son!
 
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top