MHB Calculation of a surface integral

Click For Summary
The discussion focuses on calculating the surface integral of the vector field F(x,y,z)=(0,0,z) over the unit sphere using the parametrization provided. Participants clarify that the orientation of the surface is determined by the normal vector, which is given by the cross product T_u × T_v. The integral is set up as ∫_Φ F·ds = ∫_S F·(T_u × T_v) dvdu, leading to the evaluation of the integral resulting in a value of 4π/3. The conversation confirms the correctness of the calculations and references Gauss's theorem to validate the result. The final agreement on the solution highlights the successful completion of the integral calculation.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to calculate the surface integral of $$F(x,y,z)=(0,0,z)$$ on the unit sphere with parametrization
$$x=\sin u \cos v, \ y=\sin u \sin v , \ z=\cos u \\ 0\leq u\leq \pi, \ 0\leq v\leq 2\pi$$
with positive direction the direction of $T_u\times T_v$. Could you give some hints how to calculate this? (Wondering)

I haven't really understood how we use the fact that the positive direction is the direction of $T_u\times T_v$...

Do we maybe calculate the following?

$$\int_{\Phi}F\cdot ds=\int_SF\cdot T_u\times T_v \ dvdu$$ ? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

I want to calculate the surface integral of $$F(x,y,z)=(0,0,z)$$ on the unit sphere with parametrization
$$x=\sin u \cos v, \ y=\sin u \sin v , \ z=\cos u \\ 0\leq u\leq \pi, \ 0\leq v\leq 2\pi$$
with positive direction the direction of $T_u\times T_v$. Could you give some hints how to calculate this? (Wondering)

I haven't really understood how we use the fact that the positive direction is the direction of $T_u\times T_v$...

Hey mathmari! (Smile)

The orientation of a surface is the direction that we give to the normal vector, meaning we have 2 choices.
When we pick $T_u\times T_v$ we get a normal vector that has a specific direction, which serves to identify the orientation. (Nerd)

Do we maybe calculate the following?

$$\int_{\Phi}F\cdot ds=\int_SF\cdot T_u\times T_v \ dvdu$$ ? (Wondering)

Yep! (Nod)
 
I like Serena said:
The orientation of a surface is the direction that we give to the normal vector, meaning we have 2 choices.
When we pick $T_u\times T_v$ we get a normal vector that has a specific direction, which serves to identify the orientation. (Nerd)

Ah... I see... (Thinking) Is the formula of $T$ the following? $$T(u,v)=(\sin u \cos v, \sin u \sin v , \cos u)$$ ? (Wondering)
 
mathmari said:
Ah... I see... (Thinking) Is the formula of $T$ the following? $$T(u,v)=(\sin u \cos v, \sin u \sin v , \cos u)$$ ? (Wondering)

Yes. (Nod)
 
So, we have the following:

$$T_u=(\cos u \cos v, \cos u \sin v , -\sin u) \\ T_v=(-\sin u \sin v, \sin u \cos v , 0)$$

Therefore, $$T_u\times T_v=\left (\cos v \sin^2u, \sin^2u \sin v, \cos u \sin u\right )$$

So, $$\int_{\Phi}F\cdot ds=\int_SF\cdot T_u\times T_v \ dvdu=\int_0^{\pi} \int_0^{2\pi} \cos^2 u \sin u \ dvdu=2\pi \int_0^{\pi} \cos^2 u \sin u \ du=2\pi \left [-\frac{\cos^3u}{3}\right ]_0^{\pi}=\frac{4\pi}{3}$$

Is this correct? (Wondering)
 
mathmari said:
So, $$\int_{\Phi}F\cdot ds=\int_SF\cdot T_u\times T_v \ dvdu=\int_0^{\pi} \int_0^{2\pi} \cos^2 u \sin u \ dvdu=2\pi \int_0^{\pi} \cos^2 u \sin u \ du=2\pi \left [-\frac{\cos^3u}{3}\right ]_0^{\pi}=\frac{4\pi}{3}$$

Is this correct? (Wondering)

Let's see... (Thinking)
... according to Gauss's theorem we have:
$$\oint_{\Phi}F\cdot ds = \int_{V(\Phi)} \nabla \cdot F dV = \int_{V(\Phi)} dV = \frac 43\pi
$$
Yes! I think it is correct! (Happy)
 
I like Serena said:
Yes! I think it is correct! (Happy)

Great! Thanks a lot! (Happy)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
2K