Calculations: Creep of Metals and the Life of a Rod

AI Thread Summary
The discussion focuses on solving a problem related to the creep of metals, specifically a steel rod under stress. Initial calculations were corrected to exclude certain data points and emphasized the need to account for temperature dependence. The revised approach involves plotting ln(eps-dot) + Q/kT against ln(Sigma) to derive constants n and B. The user expressed difficulty in reading handwritten notes and requested equations be rewritten in LaTeX for clarity. The final calculations suggest a temperature dependence of the form ln(ε) + 0.0604/T, indicating progress in solving the problem.
Nadia
Messages
4
Reaction score
2
TL;DR Summary
Exercise about estimating the life of a rod given a graph and an equation to work with. (Ex. 3.6 from Inelastic Deformation of Metals: Models, Mechanical Properties, and Metallurgy from D. C. Stouffer and L. Thomas Dame)
I'm sorry I'm uploading lots of images because I don't know how to write equations here.

PROBLEM DESCRIPTION

I have to solve this problem:

1673261486756.png

Figure P3.6:
1673261515670.png

MY SOLUTION

I did this:

1673261607364.png


THE CORRECTION

I got this as a correction:

- Don't use the middle line in figure P3.6 in my calculations.
- Start finding Q/k but for the top and bottom line, if they are not identical, deal with it.
- You will now have the temperature dependance.
- Plot ln(eps-dot)+Q/kT as a function of ln(Sigma)
- You get two points from which you can calculate n and B

SOLUTION AFTER THE CORRECTION

1673261884009.png


I've now done this part but I think it's wrong and I also don't know how to keep going with the plot.
 
Last edited:
Engineering news on Phys.org
FEAnalyst said:
It's hard to read those hand notes. It would certainly help if you rewrote the equations using LaTeX: https://www.physicsforums.com/help/latexhelp/
Okay! Thanks, I didn't see this. I'm gonna give it a try
 
In this thread, the problem is presented using images:

https://www.physicsforums.com/threads/creep-of-metals.1048878/

PROBLEM DESCRIPTION

I have to solve this problem:

3.6 A steel rod supporting a stress of 8000 psi at 1000ºF is not to exceed 5% creep strain. Knowing that the steady-state creep rate can be expressed by an equation of the form
$$ε = B|∂|^n exp (-Q/kT)$$,

where Q is the creep activation energy, determine the constants from the data for the steel in Figure P3.6 and estimate the life of the rod. (ºR = ºF - 460).

Figure P3.6:
1673261515670-png.png


MY SOLUTION
##y = ax+b##, ##a=\frac {\Delta y} {\Delta x} = \frac {y_2-y_1} {ln(\frac {x_2} {x_1})}##
$$ε = B|∂|^n exp (-Q/kT),$$

##1/T=m ln ε + n##

##lnε=lnB+nln|∂|-Q/(kT) \rightarrow lnε -b = \frac {-Q} {k} · \frac {1} {T}##
## \rightarrow \frac {-k} {Q} · \{ lnε - lnb \} = \frac {1} {T}##
## \rightarrow \frac {k} {Q} lnb - \frac {k} {Q} lnε = \frac {1} {T}##
## \rightarrow a = \frac {k} {Q} = \frac {\frac {1} {R_2} - \frac {1} {R_1}} {ln (\frac {ε_2} {ε_1}) }##

Using points from the graph:

##a = \frac {k} {Q} = \frac {\frac {1} {6.5*10^{-4}} - \frac {1} {6.85*10^{-4}}} {ln (\frac {0.006} {0.0008}) }=3.901*10^{-7}##

##\rightarrow ln0.0008 · lnB+n ln 8000 - \frac {1} {3.901*10^{-7}} · \frac {1} {811} ##

##\rightarrow ln0.0008 + \frac {1} {3.901*10^{-7}} · \frac {1} {811} -n ln8000 = lnB##

##ln0.0003=lnB + n ln5000 - \frac {1} {3.901*10^{-7}} · \frac {1} {T_2}##,

where ##\frac {1} {R} = 6.5*10^{-4} \rightarrow F = 1078,46 \rightarrow T_2 = 855K##

##ln0.0003=lnB + n ln5000 - \frac {1} {3.901*10^{-7}} · \frac {1} {855}##

##ln0.0003+\frac {1} {3.901*10^{-7}} · \frac {1} {855}-n ln5000=lnB##

##ln0.0008+\frac {1} {3.901*10^{-7} · 811} -n ln8000=ln0.0003+\frac {1} {3.901*10^{-7}} · \frac {1} {855}-n ln5000##

##3153.71-n ln8000 = 2990.07-n ln5000##

##163.64 = n ln8000 - n ln5000= n (ln8000-ln5000) = n 0.47##

##n = \frac {163.64} {0.47} = 348.16##

##-> ln0.0003 + \frac {1} {3.901*10^{-7} · 855} - 348.16 · ln5000 = lnB \rightarrow 24,6598 = lnB##

##e^{24.6598} = e^{lnB} = B \rightarrow B = 5.124 * 10^{10}##

From the relationship between strain rate and time:
##ln t = lnε + \frac {Q} {kT} - n ln∂ - lnB = 0.064##

##\rightarrow t=e^{0.064} = 1.067##

THE CORRECTION

I got this as a correction:

- Don't use the middle line in figure P3.6 in my calculations.
- Start finding Q/k but for the top and bottom line, if they are not identical, deal with it.
- You will now have the temperature dependance.
- Plot ln(eps-dot)+Q/kT as a function of ln(Sigma)
- You get two points from which you can calculate n and B

SOLUTION AFTER THE CORRECTION
From the first document:

## a_T = \frac {k} {Q} = \frac {\frac {1} {R_2} - \frac {1} {R_1}} {ln (\frac {ε_2} {ε_1})} = \frac {\frac {1} {7.2*10^{-4}} - \frac {1} {8*10^{-4}}} {ln (\frac {0.01} {1*10^{-6}}) } = 15.08 ##

##a_B = \frac {k} {Q} = \frac {\frac {1} {R_2} - \frac {1} {R_1}} {ln (\frac {ε_2} {ε_1})} = \frac {\frac {1} {6.2*10^{-4}} - \frac {1} {7*10^{-4}}} {ln (\frac {0.01} {1*10^{-6}}) } = 20.01##

They are not identical, so we interpolate:

##\frac {15000-5000} {8000-5000} = \frac {20.01-15.08} {x-15.08}##

From where ##x = 16.559##
##\frac {k} {Q} = 16.559## temperature dependance -> ##ln(ε) + \frac {Q} {kT} -> ln(ε) + 0.0604/T##
 
Last edited:
Here's a video by “driving 4 answers” who seems to me to be well versed on the details of Internal Combustion engines. The video does cover something that's a bit shrouded in 'conspiracy theory', and he touches on that, but of course for phys.org, I'm only interested in the actual science involved. He analyzes the claim of achieving 100 mpg with a 427 cubic inch V8 1970 Ford Galaxy in 1977. Only the fuel supply system was modified. I was surprised that he feels the claim could have been...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
TL;DR Summary: Heard in the news about using sonar to locate the sub Hello : After the sinking of the ship near the Greek shores , carrying of alot of people , there was another accident that include 5 tourists and a submarine visiting the titanic , which went missing Some technical notes captured my attention, that there us few sonar devices are hearing sounds repeated every 30 seconds , but they are not able to locate the source Is it possible that the sound waves are reflecting from...
Back
Top