Calculations: Creep of Metals and the Life of a Rod

Click For Summary
The discussion focuses on solving a problem related to the creep of metals, specifically a steel rod under stress. Initial calculations were corrected to exclude certain data points and emphasized the need to account for temperature dependence. The revised approach involves plotting ln(eps-dot) + Q/kT against ln(Sigma) to derive constants n and B. The user expressed difficulty in reading handwritten notes and requested equations be rewritten in LaTeX for clarity. The final calculations suggest a temperature dependence of the form ln(ε) + 0.0604/T, indicating progress in solving the problem.
Nadia
Messages
4
Reaction score
2
TL;DR
Exercise about estimating the life of a rod given a graph and an equation to work with. (Ex. 3.6 from Inelastic Deformation of Metals: Models, Mechanical Properties, and Metallurgy from D. C. Stouffer and L. Thomas Dame)
I'm sorry I'm uploading lots of images because I don't know how to write equations here.

PROBLEM DESCRIPTION

I have to solve this problem:

1673261486756.png

Figure P3.6:
1673261515670.png

MY SOLUTION

I did this:

1673261607364.png


THE CORRECTION

I got this as a correction:

- Don't use the middle line in figure P3.6 in my calculations.
- Start finding Q/k but for the top and bottom line, if they are not identical, deal with it.
- You will now have the temperature dependance.
- Plot ln(eps-dot)+Q/kT as a function of ln(Sigma)
- You get two points from which you can calculate n and B

SOLUTION AFTER THE CORRECTION

1673261884009.png


I've now done this part but I think it's wrong and I also don't know how to keep going with the plot.
 
Last edited:
Engineering news on Phys.org
FEAnalyst said:
It's hard to read those hand notes. It would certainly help if you rewrote the equations using LaTeX: https://www.physicsforums.com/help/latexhelp/
Okay! Thanks, I didn't see this. I'm gonna give it a try
 
In this thread, the problem is presented using images:

https://www.physicsforums.com/threads/creep-of-metals.1048878/

PROBLEM DESCRIPTION

I have to solve this problem:

3.6 A steel rod supporting a stress of 8000 psi at 1000ºF is not to exceed 5% creep strain. Knowing that the steady-state creep rate can be expressed by an equation of the form
$$ε = B|∂|^n exp (-Q/kT)$$,

where Q is the creep activation energy, determine the constants from the data for the steel in Figure P3.6 and estimate the life of the rod. (ºR = ºF - 460).

Figure P3.6:
1673261515670-png.png


MY SOLUTION
##y = ax+b##, ##a=\frac {\Delta y} {\Delta x} = \frac {y_2-y_1} {ln(\frac {x_2} {x_1})}##
$$ε = B|∂|^n exp (-Q/kT),$$

##1/T=m ln ε + n##

##lnε=lnB+nln|∂|-Q/(kT) \rightarrow lnε -b = \frac {-Q} {k} · \frac {1} {T}##
## \rightarrow \frac {-k} {Q} · \{ lnε - lnb \} = \frac {1} {T}##
## \rightarrow \frac {k} {Q} lnb - \frac {k} {Q} lnε = \frac {1} {T}##
## \rightarrow a = \frac {k} {Q} = \frac {\frac {1} {R_2} - \frac {1} {R_1}} {ln (\frac {ε_2} {ε_1}) }##

Using points from the graph:

##a = \frac {k} {Q} = \frac {\frac {1} {6.5*10^{-4}} - \frac {1} {6.85*10^{-4}}} {ln (\frac {0.006} {0.0008}) }=3.901*10^{-7}##

##\rightarrow ln0.0008 · lnB+n ln 8000 - \frac {1} {3.901*10^{-7}} · \frac {1} {811} ##

##\rightarrow ln0.0008 + \frac {1} {3.901*10^{-7}} · \frac {1} {811} -n ln8000 = lnB##

##ln0.0003=lnB + n ln5000 - \frac {1} {3.901*10^{-7}} · \frac {1} {T_2}##,

where ##\frac {1} {R} = 6.5*10^{-4} \rightarrow F = 1078,46 \rightarrow T_2 = 855K##

##ln0.0003=lnB + n ln5000 - \frac {1} {3.901*10^{-7}} · \frac {1} {855}##

##ln0.0003+\frac {1} {3.901*10^{-7}} · \frac {1} {855}-n ln5000=lnB##

##ln0.0008+\frac {1} {3.901*10^{-7} · 811} -n ln8000=ln0.0003+\frac {1} {3.901*10^{-7}} · \frac {1} {855}-n ln5000##

##3153.71-n ln8000 = 2990.07-n ln5000##

##163.64 = n ln8000 - n ln5000= n (ln8000-ln5000) = n 0.47##

##n = \frac {163.64} {0.47} = 348.16##

##-> ln0.0003 + \frac {1} {3.901*10^{-7} · 855} - 348.16 · ln5000 = lnB \rightarrow 24,6598 = lnB##

##e^{24.6598} = e^{lnB} = B \rightarrow B = 5.124 * 10^{10}##

From the relationship between strain rate and time:
##ln t = lnε + \frac {Q} {kT} - n ln∂ - lnB = 0.064##

##\rightarrow t=e^{0.064} = 1.067##

THE CORRECTION

I got this as a correction:

- Don't use the middle line in figure P3.6 in my calculations.
- Start finding Q/k but for the top and bottom line, if they are not identical, deal with it.
- You will now have the temperature dependance.
- Plot ln(eps-dot)+Q/kT as a function of ln(Sigma)
- You get two points from which you can calculate n and B

SOLUTION AFTER THE CORRECTION
From the first document:

## a_T = \frac {k} {Q} = \frac {\frac {1} {R_2} - \frac {1} {R_1}} {ln (\frac {ε_2} {ε_1})} = \frac {\frac {1} {7.2*10^{-4}} - \frac {1} {8*10^{-4}}} {ln (\frac {0.01} {1*10^{-6}}) } = 15.08 ##

##a_B = \frac {k} {Q} = \frac {\frac {1} {R_2} - \frac {1} {R_1}} {ln (\frac {ε_2} {ε_1})} = \frac {\frac {1} {6.2*10^{-4}} - \frac {1} {7*10^{-4}}} {ln (\frac {0.01} {1*10^{-6}}) } = 20.01##

They are not identical, so we interpolate:

##\frac {15000-5000} {8000-5000} = \frac {20.01-15.08} {x-15.08}##

From where ##x = 16.559##
##\frac {k} {Q} = 16.559## temperature dependance -> ##ln(ε) + \frac {Q} {kT} -> ln(ε) + 0.0604/T##
 
Last edited:
Thread 'Local pressures in turbocharger housing?'
This is question for fluid mechanics. Static pressure in the exhaust manifold(turbo car engine) is usually 1.2 to 2.5 times higher than the boost pressure(intake manifold pressure).Boost pressure is around 1bar guage pressure(2bar absolute). Can the local static pressure somewhere inside a turbine housing ever be lower than atmospheric pressure, is this possible? here some links where CFD is used...

Similar threads

  • · Replies 10 ·
Replies
10
Views
6K
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 28 ·
Replies
28
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K