MHB Calculus: Related Rates - Inverted Pyramid Filling w/ Water | Yahoo Answers

AI Thread Summary
The problem involves calculating the rate at which the water level rises in an inverted square pyramid with a height of 10 m and a base side of 13 m, filled at a rate of 10 m³ per second. The volume of the pyramid is expressed as V = (1/3)s²h, where s is the side length of the water level at height h. By establishing the relationship between s and h, the volume can be rewritten in terms of h, leading to V = (169/300)h³. Differentiating this volume with respect to time and substituting the known rate of volume change allows for the calculation of the water level rise rate, yielding dh/dt = 10/169 m/s when the pyramid is full. The final result indicates that the water level rises at approximately 0.059 m/s when the pyramid is completely filled.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

How do I do this calculus related rates problem? Full solution please.?

The Louvre museum in Paris features an inverted square pyramid with a height of 10 m. The side of the square is 13 m. Supervillains decide to fill the pyramid with water, and do so at a rate of 10 m3 per second. How quickly is the water level rising when it reaches the top? *Please note that the pyramid is inverted* Thanks guys

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Temitope,

Let's begin with the formula for the volume of a pyramid:

$$V=\frac{1}{3}bh$$

Now, the base $b$ is a square, and so let's let $s$ be the measure of the sides of the square, and so our volume formula becomes:

$$V=\frac{1}{3}s^2h$$

At any point in time, the volume of water will be a square pyramid that is similar to the container, and so we know we will always have:

$$\frac{s}{h}=\frac{13}{10}\implies s=\frac{13}{10}h$$

Now we may express the volume in terms of one variable $h$:

$$V=\frac{1}{3}\left(\frac{13}{10}h\right)^2h=\frac{169}{300}h^3$$

Now, if we differentiate with respect to time $t$, we obtain:

$$\frac{dV}{dt}=\frac{169}{100}h^2\frac{dh}{dt}$$

Now, we are told:

$$\frac{dV}{dt}=10\frac{\text{m}^3}{\text{s}}$$

And so (given that our units of length are in meters and our units time in seconds) we may write:

$$10=\frac{169}{100}h^2\frac{dh}{dt}$$

Solving for $$\frac{dh}{dt}$$, we obtain:

$$\frac{dh}{dt}=\frac{1000}{169h^2}$$

And so we find that when the pyramid is full, or when $h=10$, we have:

$$\bbox[7px,border:2px solid #207498]{\left.\frac{dh}{dt}\right|_{h=10}=\frac{1000}{169(10)^2}\frac{\text{m}}{\text{s}}=\frac{10}{169}\frac{\text{m}}{\text{s}}}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top