intangible
- 3
- 0
Can there be a definite solution for positive real values of a?
My musings so far:
0^{ix} = e^{ix\ln0} = (\cos x + i\sin x)^{\ln0} = ( \cos x + i\sin x )^{-\infty} = \left( e^{-\infty} \right)^\ln( \cos x + i\sin x ) } = 0^{\ln( \cos x + i\sin x )}
Since 0^0 can be assigned to produce either 1 or 0 depending on the context and for non-zero real values 0^a is always zero, I'm wondering how to deal with this.
Consider the following:
0^0 = e^{0\ln 0} = \left( e^0 \right)^{\ln 0} = 1^{-\infty} = 1
for 1^a = 1 for all real numbers a
0^{a+bi} = e^{(a+bi)\ln0} = e^{a\ln0}(...) = \left (e^{-\infty} \right) ^a (...) = 0^a (...) = 0(...) = 0
for 0^a = 0 for a belongs to non-zero real,
hence 0 for all real a,b>0 combinations.
Please share your expertise!
Regards,
intangible
My musings so far:
0^{ix} = e^{ix\ln0} = (\cos x + i\sin x)^{\ln0} = ( \cos x + i\sin x )^{-\infty} = \left( e^{-\infty} \right)^\ln( \cos x + i\sin x ) } = 0^{\ln( \cos x + i\sin x )}
Since 0^0 can be assigned to produce either 1 or 0 depending on the context and for non-zero real values 0^a is always zero, I'm wondering how to deal with this.
Consider the following:
0^0 = e^{0\ln 0} = \left( e^0 \right)^{\ln 0} = 1^{-\infty} = 1
for 1^a = 1 for all real numbers a
0^{a+bi} = e^{(a+bi)\ln0} = e^{a\ln0}(...) = \left (e^{-\infty} \right) ^a (...) = 0^a (...) = 0(...) = 0
for 0^a = 0 for a belongs to non-zero real,
hence 0 for all real a,b>0 combinations.
Please share your expertise!
Regards,
intangible