etf
- 179
- 2
Let's say I have Fourier series of some function, f(t), f(t)=\frac{a0}{2}+\sum_{n=1}^{\infty}(an\cos{\frac{2n\pi t}{b-a}}+bn\sin{\frac{2n\pi t}{b-a}}), where a and b are lower and upper boundary of function, a0=\frac{2}{b-a}\int_{a}^{b}f(t)dt, an=\frac{2}{b-a}\int_{a}^{b}f(t)cos\frac{2n\pi t}{b-a}dt, bn=\frac{2}{b-a}\int_{a}^{b}f(t)sin\frac{2n\pi t}{b-a}dt. My question is, can I find derivative of Fourier series on this way:
\frac{d}{dt}\sum_{n=1}^{\infty}(an\cos{\frac{2n\pi t}{b-a}}+bn\sin{\frac{2n\pi t}{b-a}})=\frac{d}{dt}(\sum_{n=1}^{\infty}an\cos{\frac{2n\pi t}{b-a}}+\sum_{n=1}^{\infty}bn\sin{\frac{2n\pi t}{b-a}})=
\frac{d}{dt}\sum_{n=1}^{\infty}(an\cos{\frac{2n\pi t}{b-a}}+bn\sin{\frac{2n\pi t}{b-a}})=\frac{d}{dt}(\sum_{n=1}^{\infty}an\cos{\frac{2n\pi t}{b-a}}+\sum_{n=1}^{\infty}bn\sin{\frac{2n\pi t}{b-a}})=
Last edited: