jostpuur
- 2,112
- 19
This is about quantum mechanics, but it is sufficiently difficult existence question dealing with DE and operator theory, that I think it fits the DE subforum the best:
Let E:\mathbb{N}\to\mathbb{R} be an arbitrary map, but so that \textrm{Im}(E) is bounded from below. Does there exist a measurable function V:\mathbb{R}\to\mathbb{R} such that the eigenvalues of the operator
<br /> H = -\frac{1}{2}\partial_x^2 + M_V<br />
are the given E(n)?
Here M_V:\mathbb{C}^{\mathbb{R}}\to \mathbb{C}^{\mathbb{R}} is the multiplication operator (M_V\psi)(x) = V(x)\psi(x).
For the sake of rigor we can give the following definition for the domain of H,
<br /> D(H) = \{\psi\in L^2(\mathbb{R},\mathbb{C})\;|\; \psi\;\textrm{is piece wisely}\;C^2\quad\textrm{and}\quad \int dx\;\Big|-\frac{1}{2}\partial_x^2\psi(x) + V(x)\psi(x)\Big|^2 < \infty\}<br />
So H is a mapping H:D(H)\to L^2(\mathbb{R},\mathbb{C}).
Let E:\mathbb{N}\to\mathbb{R} be an arbitrary map, but so that \textrm{Im}(E) is bounded from below. Does there exist a measurable function V:\mathbb{R}\to\mathbb{R} such that the eigenvalues of the operator
<br /> H = -\frac{1}{2}\partial_x^2 + M_V<br />
are the given E(n)?
Here M_V:\mathbb{C}^{\mathbb{R}}\to \mathbb{C}^{\mathbb{R}} is the multiplication operator (M_V\psi)(x) = V(x)\psi(x).
For the sake of rigor we can give the following definition for the domain of H,
<br /> D(H) = \{\psi\in L^2(\mathbb{R},\mathbb{C})\;|\; \psi\;\textrm{is piece wisely}\;C^2\quad\textrm{and}\quad \int dx\;\Big|-\frac{1}{2}\partial_x^2\psi(x) + V(x)\psi(x)\Big|^2 < \infty\}<br />
So H is a mapping H:D(H)\to L^2(\mathbb{R},\mathbb{C}).
Last edited: