Can Any Inner Product Be Defined in Infinite Dimensional Vector Spaces?

neelakash
Messages
491
Reaction score
1
Hi everyone,
I need a clarification:I read in E. Butkov's book that an inner product may always be imposed on a finite dimensional linear vector space in a variety of ways...Butkov does not explain the point...Can anyone please clarify this?

I wonder what it would be for an infinite dimensional case...As we all know that Hilbert space used in quantum mechanics is an infinite dimensional space. Yet all the books almost inherently define the scalar product in Hilbert space.Is there any hinge in the story?

-Thanks,

Neel
 
Physics news on Phys.org
First of all, a Hilbert space by definition must have an inner product defined on it. (A Hilbert space is a vector space over the real or complex numbers with a complete inner product.)

Secondly, in a finite-dimensional space, if you fix any positive-definite matrix M, then the expression \langle x,y \rangle = x^{\dagger}My defines an inner product.

The usual dot product is a special case when M is the identity matrix.
 
Thank you
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top