Amad27
- 409
- 1
Mod note: Fixed the LaTeX. The closing itex tag should be /itex, not \itex (in brackets).
I find it easier to use # # in place of itex, or $ $ in place of tex (without the extra space).
Prove \lim_{x \to 0} \frac{x}{\sin^2(x) + 1} = 0
Given below:
Let
|x| < 1 \implies -1 < x < 1
\sin^2(-1) + 1 < \sin^2(x) + 1 <\sin^2(1) + 2
\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} > \frac{1}{\sin^2(1) + 1}
<br /> \implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} \implies \frac{1}{|\sin^2(-1) + 1|} > \frac{1}{|\sin^2(x) + 1|} \implies \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|}
<br /> (1) |x| < \delta_1<br />
<br /> (2) \displaystyle \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|}<br />
<br /> (3) \displaystyle \frac{|x|}{|\sin^2(x) + 1|} < \frac{\delta_1} {|\sin^2(-1) + 1|}<br />
Finally,
<br /> \epsilon(\sin^2(-1) + 1) = \delta_1<br />
Therefore,
<br /> \delta = \min(1,\epsilon \cdot (\sin^2(-1) + 1)) \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \blacksquare<br />
I find it easier to use # # in place of itex, or $ $ in place of tex (without the extra space).
Homework Statement
Prove \lim_{x \to 0} \frac{x}{\sin^2(x) + 1} = 0
Homework Equations
Given below:
The Attempt at a Solution
Let
|x| < 1 \implies -1 < x < 1
\sin^2(-1) + 1 < \sin^2(x) + 1 <\sin^2(1) + 2
\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} > \frac{1}{\sin^2(1) + 1}
<br /> \implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} \implies \frac{1}{|\sin^2(-1) + 1|} > \frac{1}{|\sin^2(x) + 1|} \implies \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|}
<br /> (1) |x| < \delta_1<br />
<br /> (2) \displaystyle \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|}<br />
<br /> (3) \displaystyle \frac{|x|}{|\sin^2(x) + 1|} < \frac{\delta_1} {|\sin^2(-1) + 1|}<br />
Finally,
<br /> \epsilon(\sin^2(-1) + 1) = \delta_1<br />
Therefore,
<br /> \delta = \min(1,\epsilon \cdot (\sin^2(-1) + 1)) \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \blacksquare<br />
Last edited by a moderator: