This is simply the Newton's equations of motion with the Lorentz force acting on the particle(s): F= q(E+vxB) .
If a particle is at rest and interacts with an electromagnetic wave-packet, we can easily guess that it will be put into motion, meaning that it will have absorbed energy.
Of course the amount of energy absorbed depends on the precise shape of the wave packet.
We could easily imagine a wavepacket-game that would shake a particle for a while but in the end leave it at rest once the wavepacket has passed his way.
Oh well, is it actually possible to do that?
Actually, starting from this simple premise, may actually lead to interresting questions.
Really many.
From particle accelerators to the difficulties of classical physics applied to atoms, including any microwave devices, plasma physics, optics, ... , Landau damping, Kramer-Kronig relations, causality, ...
There are many books dealing wuth that topic, but as the subject can be very broad it is difficult to give a specific reference. You could look for electrodynamics on google books. If you have precise topics in mind, let us know. For the interaction with fully ionised classical plasmas, I could could provide maybe 10 famous references.