Can Borel resummation be applied to integrals ?

  • Thread starter Thread starter Klaus_Hoffmann
  • Start date Start date
  • Tags Tags
    Applied Integrals
Klaus_Hoffmann
Messages
85
Reaction score
1
The question is can we obtain the 'Borel sum' of an integral of f(x) from 0 to infinity as the Laplace transform of

\int_{0}^{\infty}dx \frac{f(x)}{\Gamma(x+1+u)t^{x+u}

where 'alpha' is a real or Complex number
 
Physics news on Phys.org
i meant (but the nasty latex does not work)

\int_{0}^{\infty} dx \frac{f(x)}{G(x+1+u)}t^{x+u}

then the Laplace transform evaluated at s=1 is the 'Borel sum' of the integral

\int_{0}^{\infty} dx f(x)

Of course G(x) is the 'Gamma function' generalization of factorial n!
 
Last edited:

Similar threads

Back
Top