Can Classical Dynamics Lead to Time Crystals?

  • Thread starter Thread starter Bobbywhy
  • Start date Start date
  • Tags Tags
    Crystals Time
Bobbywhy
Gold Member
Messages
1,732
Reaction score
52
Classical Time Crystals
Alfred Shapere and Frank Wilczek

We consider the possibility that classical dynamical systems display motion in their lowest energy state, forming a time analogue of crystalline spatial order. Challenges facing that idea are identified and overcome. We display arbitrary orbits of an angular variable as lowest-energy trajectories for nonsingular Lagrangian systems. Dynamics within orbits of broken symmetry provide a natural
arena for formation of time crystals. We exhibit models of that kind, including a model with traveling density waves.

http://arXiv:1202.2537v1
 
Last edited by a moderator:
Physics news on Phys.org
I seem to notice a buildup of papers like this: Detecting single gravitons with quantum sensing. (OK, old one.) Toward graviton detection via photon-graviton quantum state conversion Is this akin to “we’re soon gonna put string theory to the test”, or are these legit? Mind, I’m not expecting anyone to read the papers and explain them to me, but if one of you educated people already have an opinion I’d like to hear it. If not please ignore me. EDIT: I strongly suspect it’s bunk but...
I'm trying to understand the relationship between the Higgs mechanism and the concept of inertia. The Higgs field gives fundamental particles their rest mass, but it doesn't seem to directly explain why a massive object resists acceleration (inertia). My question is: How does the Standard Model account for inertia? Is it simply taken as a given property of mass, or is there a deeper connection to the vacuum structure? Furthermore, how does the Higgs mechanism relate to broader concepts like...
Back
Top