Can Cubic Roots and Square Roots Combine to Equal One?

  • Context: MHB 
  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Radical
Click For Summary

Discussion Overview

The discussion revolves around the equation involving cubic roots and square roots, specifically whether the expression cbrt{2 + sqrt{5}} + cbrt{2 - sqrt{5}} equals 1. Participants explore methods to prove this without using a calculator, focusing on algebraic manipulation and reasoning.

Discussion Character

  • Exploratory, Technical explanation, Mathematical reasoning

Main Points Raised

  • One participant suggests cubing both sides of the equation as a potential first step to prove the equality.
  • Another participant provides a detailed algebraic expansion using the binomial theorem to show how the expression can be simplified to demonstrate that the sum equals 1.
  • There is a suggestion to let the sum of the cube roots equal a variable (x) to facilitate the cubing and solving process.
  • Some participants express a preference for solving the problem by hand rather than using computational tools, indicating a desire for deeper understanding.
  • One participant questions the introduction of the variable x, seeking clarification on its necessity in the proof.

Areas of Agreement / Disagreement

Participants generally agree on the approach of cubing both sides and manipulating the equation, but there is some confusion regarding the introduction of the variable x and its role in the proof process. The discussion remains unresolved regarding the clarity of this method.

Contextual Notes

Some participants express uncertainty about the steps involved in cubing the expression and removing radicals, indicating that the mathematical steps may not be fully resolved.

mathdad
Messages
1,280
Reaction score
0
Let cbrt = cube root

Let sqrt = square root

Show that
cbrt{2 + sqrt{5}} + cbrt{2 - sqrt{5}} = 1 without using a calculator.

Can someone get me started?

Do I raise both sides to the third power as step 1?
 
Mathematics news on Phys.org
It holds that $$(a\pm b)^3=a^3\pm 3a^2b+3ab^2\pm b^3$$

We have the following:
\begin{align*}&\left(1\pm \sqrt{5}\right )^3=1\pm 3\sqrt{5}+3\cdot 5\pm \sqrt{5}^3 =1\pm 3\sqrt{5}+15\pm 5\sqrt{5} =16\pm 8\sqrt{5}=8\left (2\pm \sqrt{5}\right )\\ & \Rightarrow 2\pm \sqrt{5}=\frac{\left(1\pm \sqrt{5}\right )^3}{8} \\ & \Rightarrow \sqrt[3]{2\pm \sqrt{5}}=\sqrt[3]{\frac{\left(1\pm \sqrt{5}\right )^3}{8}} \\ & \Rightarrow \sqrt[3]{2\pm \sqrt{5}}=\frac{1\pm \sqrt{5}}{2}\end{align*}

Therefore we get $$\sqrt[3]{2+ \sqrt{5}}+\sqrt[3]{2- \sqrt{5}}=\frac{1+ \sqrt{5}}{2}+\frac{1- \sqrt{5}}{2}=1$$
 
RTCNTC said:
Let cbrt = cube root

Let sqrt = square root

Show that
cbrt{2 + sqrt{5}} + cbrt{2 - sqrt{5}} = 1 without using a calculator.

Can someone get me started?

Do I raise both sides to the third power as step 1?

you need to prove $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}} = 1$

you can let $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}} = x$ and cube both sides and see hat you get after solving it
 
mathmari said:
It holds that $$(a\pm b)^3=a^3\pm 3a^2b+3ab^2\pm b^3$$

We have the following:
\begin{align*}&\left(1\pm \sqrt{5}\right )^3=1\pm 3\sqrt{5}+3\cdot 5\pm \sqrt{5}^3 =1\pm 3\sqrt{5}+15\pm 5\sqrt{5} =16\pm 8\sqrt{5}=8\left (2\pm \sqrt{5}\right )\\ & \Rightarrow 2\pm \sqrt{5}=\frac{\left(1\pm \sqrt{5}\right )^3}{8} \\ & \Rightarrow \sqrt[3]{2\pm \sqrt{5}}=\sqrt[3]{\frac{\left(1\pm \sqrt{5}\right )^3}{8}} \\ & \Rightarrow \sqrt[3]{2\pm \sqrt{5}}=\frac{1\pm \sqrt{5}}{2}\end{align*}

Therefore we get $$\sqrt[3]{2+ \sqrt{5}}+\sqrt[3]{2- \sqrt{5}}=\frac{1+ \sqrt{5}}{2}+\frac{1- \sqrt{5}}{2}=1$$

Nicely done! This is not your typical radical equation problem. I could have easily used the wolfram website but this is like cheating. I like to work it out by hand and then check my answer using wolfram or mathway.com.

- - - Updated - - -

kaliprasad said:
you need to prove $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}} = 1$

you can let $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}} = x$ and cube both sides and see hat you get after solving it

I understand what you mean but where did x come from? The original equation is equated to 1 not x.
 
RTCNTC said:
Nicely done! This is not your typical radical equation problem. I could have easily used the wolfram website but this is like cheating. I like to work it out by hand and then check my answer using wolfram or mathway.com.

- - - Updated - - -
I understand what you mean but where did x come from? The original equation is equated to 1 not x.

you are supposed to prove that it is 1. you do not know it. so presume that it is x. then cube and remove redicals and solve for x.
it should come to be 1.
 
Thank you everyone.
 

Similar threads

  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
10
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
9
Views
3K
  • · Replies 9 ·
Replies
9
Views
12K
Replies
4
Views
2K