Can Cubic Roots and Square Roots Combine to Equal One?

  • Context: MHB 
  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Radical
Click For Summary
SUMMARY

The discussion centers on proving that the sum of the cube roots, specifically cbrt{2 + sqrt{5}} + cbrt{2 - sqrt{5}}, equals 1. Participants suggest cubing both sides of the equation and using the identity (a ± b)³ = a³ ± 3a²b + 3ab² ± b³ to simplify the expression. The final proof confirms that cbrt{2 + sqrt{5}} + cbrt{2 - sqrt{5}} simplifies to 1 through algebraic manipulation, demonstrating the relationship between cube roots and square roots in this context.

PREREQUISITES
  • Understanding of cube roots and square roots
  • Familiarity with algebraic identities, particularly (a ± b)³
  • Basic skills in manipulating radical expressions
  • Ability to perform algebraic proofs without a calculator
NEXT STEPS
  • Study the properties of cube roots and their relationships with square roots
  • Learn how to apply algebraic identities in proofs
  • Explore advanced topics in radical equations and their solutions
  • Practice solving similar problems using tools like Wolfram Alpha or Mathway
USEFUL FOR

Mathematics students, educators, and anyone interested in algebraic proofs and radical expressions will benefit from this discussion.

mathdad
Messages
1,280
Reaction score
0
Let cbrt = cube root

Let sqrt = square root

Show that
cbrt{2 + sqrt{5}} + cbrt{2 - sqrt{5}} = 1 without using a calculator.

Can someone get me started?

Do I raise both sides to the third power as step 1?
 
Mathematics news on Phys.org
It holds that $$(a\pm b)^3=a^3\pm 3a^2b+3ab^2\pm b^3$$

We have the following:
\begin{align*}&\left(1\pm \sqrt{5}\right )^3=1\pm 3\sqrt{5}+3\cdot 5\pm \sqrt{5}^3 =1\pm 3\sqrt{5}+15\pm 5\sqrt{5} =16\pm 8\sqrt{5}=8\left (2\pm \sqrt{5}\right )\\ & \Rightarrow 2\pm \sqrt{5}=\frac{\left(1\pm \sqrt{5}\right )^3}{8} \\ & \Rightarrow \sqrt[3]{2\pm \sqrt{5}}=\sqrt[3]{\frac{\left(1\pm \sqrt{5}\right )^3}{8}} \\ & \Rightarrow \sqrt[3]{2\pm \sqrt{5}}=\frac{1\pm \sqrt{5}}{2}\end{align*}

Therefore we get $$\sqrt[3]{2+ \sqrt{5}}+\sqrt[3]{2- \sqrt{5}}=\frac{1+ \sqrt{5}}{2}+\frac{1- \sqrt{5}}{2}=1$$
 
RTCNTC said:
Let cbrt = cube root

Let sqrt = square root

Show that
cbrt{2 + sqrt{5}} + cbrt{2 - sqrt{5}} = 1 without using a calculator.

Can someone get me started?

Do I raise both sides to the third power as step 1?

you need to prove $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}} = 1$

you can let $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}} = x$ and cube both sides and see hat you get after solving it
 
mathmari said:
It holds that $$(a\pm b)^3=a^3\pm 3a^2b+3ab^2\pm b^3$$

We have the following:
\begin{align*}&\left(1\pm \sqrt{5}\right )^3=1\pm 3\sqrt{5}+3\cdot 5\pm \sqrt{5}^3 =1\pm 3\sqrt{5}+15\pm 5\sqrt{5} =16\pm 8\sqrt{5}=8\left (2\pm \sqrt{5}\right )\\ & \Rightarrow 2\pm \sqrt{5}=\frac{\left(1\pm \sqrt{5}\right )^3}{8} \\ & \Rightarrow \sqrt[3]{2\pm \sqrt{5}}=\sqrt[3]{\frac{\left(1\pm \sqrt{5}\right )^3}{8}} \\ & \Rightarrow \sqrt[3]{2\pm \sqrt{5}}=\frac{1\pm \sqrt{5}}{2}\end{align*}

Therefore we get $$\sqrt[3]{2+ \sqrt{5}}+\sqrt[3]{2- \sqrt{5}}=\frac{1+ \sqrt{5}}{2}+\frac{1- \sqrt{5}}{2}=1$$

Nicely done! This is not your typical radical equation problem. I could have easily used the wolfram website but this is like cheating. I like to work it out by hand and then check my answer using wolfram or mathway.com.

- - - Updated - - -

kaliprasad said:
you need to prove $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}} = 1$

you can let $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}} = x$ and cube both sides and see hat you get after solving it

I understand what you mean but where did x come from? The original equation is equated to 1 not x.
 
RTCNTC said:
Nicely done! This is not your typical radical equation problem. I could have easily used the wolfram website but this is like cheating. I like to work it out by hand and then check my answer using wolfram or mathway.com.

- - - Updated - - -
I understand what you mean but where did x come from? The original equation is equated to 1 not x.

you are supposed to prove that it is 1. you do not know it. so presume that it is x. then cube and remove redicals and solve for x.
it should come to be 1.
 
Thank you everyone.
 

Similar threads

  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
10
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
9
Views
3K
  • · Replies 9 ·
Replies
9
Views
12K
Replies
4
Views
2K