MHB Can Cubic Roots and Square Roots Combine to Equal One?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Radical
mathdad
Messages
1,280
Reaction score
0
Let cbrt = cube root

Let sqrt = square root

Show that
cbrt{2 + sqrt{5}} + cbrt{2 - sqrt{5}} = 1 without using a calculator.

Can someone get me started?

Do I raise both sides to the third power as step 1?
 
Mathematics news on Phys.org
It holds that $$(a\pm b)^3=a^3\pm 3a^2b+3ab^2\pm b^3$$

We have the following:
\begin{align*}&\left(1\pm \sqrt{5}\right )^3=1\pm 3\sqrt{5}+3\cdot 5\pm \sqrt{5}^3 =1\pm 3\sqrt{5}+15\pm 5\sqrt{5} =16\pm 8\sqrt{5}=8\left (2\pm \sqrt{5}\right )\\ & \Rightarrow 2\pm \sqrt{5}=\frac{\left(1\pm \sqrt{5}\right )^3}{8} \\ & \Rightarrow \sqrt[3]{2\pm \sqrt{5}}=\sqrt[3]{\frac{\left(1\pm \sqrt{5}\right )^3}{8}} \\ & \Rightarrow \sqrt[3]{2\pm \sqrt{5}}=\frac{1\pm \sqrt{5}}{2}\end{align*}

Therefore we get $$\sqrt[3]{2+ \sqrt{5}}+\sqrt[3]{2- \sqrt{5}}=\frac{1+ \sqrt{5}}{2}+\frac{1- \sqrt{5}}{2}=1$$
 
RTCNTC said:
Let cbrt = cube root

Let sqrt = square root

Show that
cbrt{2 + sqrt{5}} + cbrt{2 - sqrt{5}} = 1 without using a calculator.

Can someone get me started?

Do I raise both sides to the third power as step 1?

you need to prove $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}} = 1$

you can let $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}} = x$ and cube both sides and see hat you get after solving it
 
mathmari said:
It holds that $$(a\pm b)^3=a^3\pm 3a^2b+3ab^2\pm b^3$$

We have the following:
\begin{align*}&\left(1\pm \sqrt{5}\right )^3=1\pm 3\sqrt{5}+3\cdot 5\pm \sqrt{5}^3 =1\pm 3\sqrt{5}+15\pm 5\sqrt{5} =16\pm 8\sqrt{5}=8\left (2\pm \sqrt{5}\right )\\ & \Rightarrow 2\pm \sqrt{5}=\frac{\left(1\pm \sqrt{5}\right )^3}{8} \\ & \Rightarrow \sqrt[3]{2\pm \sqrt{5}}=\sqrt[3]{\frac{\left(1\pm \sqrt{5}\right )^3}{8}} \\ & \Rightarrow \sqrt[3]{2\pm \sqrt{5}}=\frac{1\pm \sqrt{5}}{2}\end{align*}

Therefore we get $$\sqrt[3]{2+ \sqrt{5}}+\sqrt[3]{2- \sqrt{5}}=\frac{1+ \sqrt{5}}{2}+\frac{1- \sqrt{5}}{2}=1$$

Nicely done! This is not your typical radical equation problem. I could have easily used the wolfram website but this is like cheating. I like to work it out by hand and then check my answer using wolfram or mathway.com.

- - - Updated - - -

kaliprasad said:
you need to prove $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}} = 1$

you can let $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}} = x$ and cube both sides and see hat you get after solving it

I understand what you mean but where did x come from? The original equation is equated to 1 not x.
 
RTCNTC said:
Nicely done! This is not your typical radical equation problem. I could have easily used the wolfram website but this is like cheating. I like to work it out by hand and then check my answer using wolfram or mathway.com.

- - - Updated - - -
I understand what you mean but where did x come from? The original equation is equated to 1 not x.

you are supposed to prove that it is 1. you do not know it. so presume that it is x. then cube and remove redicals and solve for x.
it should come to be 1.
 
Thank you everyone.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top