I Can Division by Zero Be Solved in Mathematics?

IDK10
Messages
67
Reaction score
3
First of all, I didn't know where to put this in general math or differential equations.

Let's start with the basic, x/0 = α. Where α is every number and decimal number from -∞ to +∞, by rearranging, we get x = 0α, x= 0, therefore only 0/0 = α. Now, we can integrate this with graphs.

Take the equations:
y=0/0,
and y=x/0, and the variant y=(x+a)/0

y=0/0:
If y=2 then there will be a horizontal line going through the points (x, 2), where x is any number on the x-axis. However, 0/0 = α, and therefore y=α, and as this means there will be infinite jorizontal lines, the entire graph will be full.

y=x/0:
Now we are dealing with a change in x. By rearrangin, we get x=0, therefore a graph of y=x/0 ≡ x=0. Another way of proving this, is that when x is greater than, or less than 0. It won't work, for example y=1/0, 0y=1, 0=1, but 0≠1, but if it is replaced with 0, y=0/0, we get the infinite vertical line from before, but is trapped at x=0 because of the change in x making other lines impossible.

y=(x+a)/0:
This time, by rearranging, we get x=-a. By using what we said before, it works the same way. For example, y=(x-4)/0. If x = 4, then we get y=0/0, therefore we get an infinite vertical line at x=4, but mot anyother line because if x/0=0 (where x≠0), it won't work.

The gradient of y=x/0:
y=x/0, is the same as y= x*1/0, and by differentiation we get dy/dx = 1/0, but 1/0 is impossible since, by rearranging, we get from 1/0=x to 1=0, but 1≠0, yet there is a gradient, otherwise it wouldn't be traveling upwards, the graphs and differentiation contradict each other.

The gradient of y=(x+a)/0 will be the same, as nothing would change to the line, apart from its translation across the x-axis. Proof:
y=(x+a)/0
x - dy/dx = 1
a - dy/dx = 0
dy/dx = (1+0)0 = 1/0.
 
Mathematics news on Phys.org
IDK10 said:
First of all, I didn't know where to put this in general math or differential equations.

State what you are trying to do. "Solved divisions by zero" doesn't say anything specific.
 
IDK10 said:
"I solved divisions by zero": First of all,
... there is no problem to solve. ##0## when it is used alongside addition and multiplication, denotes the neutral element of addition, which doesn't belong to the multiplicative structure consider simultaneously. Thus it is simply impossible to think about its inverse. If you add it to the multiplicative structure, then you consequently invent an entire new arithmetic, which you would have to define in the first place. Given the usual structure, contradictions cannot be avoided. Thus a combination of both is doomed to fail.

Beside that we don't discuss personal theories on PF.
Thread closed.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top