Can Euler Forward or 4th Order Runge-Kutta Methods Approximate Systems of ODEs?

worryingchem
Messages
41
Reaction score
1
My question is about whether it's possible to use the Euler Forward or 4th order Runge-Kutta Methods to approximate the following system ( where the differential of other equations are on the right hand side) :
$$
\begin{cases}
\frac{dy_1}{dt} = f_1(y_1,y_2,y'_2, ... , y_n, y'_n, t) \\
\frac{dy_2}{dt} = f_2(y_1,y'_1,y_2, ... , y_n, y'_n, t) \\
...\\
\frac{dy_n}{dt} = f_n(y_1,y'_1, ... , y_{n-1}, y'_{n-1}, y_n, t) \\
\end{cases}
$$
I know you can do it for the normal form: ## \frac{d^{(n)}y}{dt^{(n)}} = f(y, y', y'', ... , y^{(n)}, t) ## and it's also possible to analytically solve differential equations of that form using linear algebra, but I'm not sure when it's not in the normal form.
 
Physics news on Phys.org
Yes, you can use those schemes because you know and use all the quantities at the right hand side at timestep 't'. However, it will be difficult to determine the stability criterion for the timestep to use a priori.
 
Thank you, I forgot about the initial values used to approximate this.
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top