Can every countable number be represented in all numeral systems?

Wminus
Messages
173
Reaction score
29
Hi. This might be a stupid question (I'm studying engineering :p), but how do you prove that all numeral systems (binary, ternary etc.) can represent every countable number?

I guess you will need to prove that any number ##N## can be written as ##N= S^0 n_0 + S^1 n_1 + S^2 n_2 + ...## where ##S## is the base of the numeral system, and ##n_i \in [0,max\{S\}]## with ##i \in \mathbb{N}##.

EDIT: fixed an error in my equation
 
Last edited:
Mathematics news on Phys.org
Is the question unclear in some way? btw n_i should be element of [0,S], not [0, max{S}]. Duno why I wrote max S, I guess I'm just exhausted due to the exams.
 
Wminus said:
Hi. This might be a stupid question (I'm studying engineering :p), but how do you prove that all numeral systems (binary, ternary etc.) can represent every countable number?

I guess you will need to prove that any number ##N## can be written as ##N= S^0 n_0 + S^1 n_1 + S^2 n_2 + ...## where ##S## is the base of the numeral system, and ##n_i \in [0,max\{S\}]## with ##i \in \mathbb{N}##.

EDIT: fixed an error in my equation
You can do a proof by induction--show that if some N has an expansion, then N+1 also has an expansion. Demonstrating that the process of "carrying" in addition terminates after a finite number of steps is sufficient.
 
  • Like
Likes Wminus
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top