It is valid because it only describes the positions of zeros and there is no zero for closely spaced slits.
The formula is based on a simplified situation with infinitely narrow slits (omnidirectional individual sources)-more like what you get with two co-phased radio frequency dipoles than two slits. If the sources are just greater than λ apart, there will only be a single zero, which will be at nearly 90° off beam. As the spacing gets narrower still, this zero will pass through the 90° direction and disappear. In any case, the beam (the diffraction you are referring to??) pattern of each 'real' single slit will have a zero at 90° or greater. Two dipoles will work fine, though, as a model because they are truly omnidirectional, individually.If the slits are too close together, the phase difference between the waves from the two sources can't be as great as π and so you can't have complete cancellation at 90°. Nevertheless, if there is a reflex angle between the two E vectors, the resulting amplitude will be noticeably lower than where they add and you will get a minimum but the zero is, as you say, at an invalid angle for the formula. I tried a brief search for a suitable diagram of the patterns of two omnidirectional sources on Google but I could find nothing. It's the sort of picture you get in books on antenna theory.
I got to know this stuff from antenna theory, rather than optics and it's actually much more approachable (imo).