Can Geothermal Energy Power Our Planet?

  • Thread starter Thread starter clickins555
  • Start date Start date
  • Tags Tags
    Energy Geothermal
AI Thread Summary
Geothermal energy is thermal energy generated and stored within the Earth, originating from its formation, radioactive decay, and volcanic activity. This energy is characterized by the geothermal gradient, which measures the temperature difference between the Earth's core and its surface. The continuous conduction of heat from the core to the surface is a key aspect of geothermal energy. Understanding these processes is essential for harnessing geothermal energy effectively. Overall, geothermal energy represents a significant and sustainable energy source.
clickins555
Messages
1
Reaction score
0
hello to every one my name is nomi..glad to be here
 
Science news on Phys.org
Geothermal energy is thermal energy generated and stored in the Earth. Thermal energy is energy that determines the temperature of matter. Earth's geothermal energy originates from the original formation of the planet, from radioactive decay of minerals and from volcanic activity. The geothermal gradient, which is the difference in temperature between the core of the planet and its surface, drives a continuous conduction of thermal energy in the form of heat from the core to the surface.
 
I need to calculate the amount of water condensed from a DX cooling coil per hour given the size of the expansion coil (the total condensing surface area), the incoming air temperature, the amount of air flow from the fan, the BTU capacity of the compressor and the incoming air humidity. There are lots of condenser calculators around but they all need the air flow and incoming and outgoing humidity and then give a total volume of condensed water but I need more than that. The size of the...
Thread 'Why work is PdV and not (P+dP)dV in an isothermal process?'
Let's say we have a cylinder of volume V1 with a frictionless movable piston and some gas trapped inside with pressure P1 and temperature T1. On top of the piston lay some small pebbles that add weight and essentially create the pressure P1. Also the system is inside a reservoir of water that keeps its temperature constant at T1. The system is in equilibrium at V1, P1, T1. Now let's say i put another very small pebble on top of the piston (0,00001kg) and after some seconds the system...
I was watching a Khan Academy video on entropy called: Reconciling thermodynamic and state definitions of entropy. So in the video it says: Let's say I have a container. And in that container, I have gas particles and they're bouncing around like gas particles tend to do, creating some pressure on the container of a certain volume. And let's say I have n particles. Now, each of these particles could be in x different states. Now, if each of them can be in x different states, how many total...
Back
Top