Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

B Can I get clarification on the constant speed of light

  1. Jul 13, 2016 #1
    I do not have a problem with the concept of the constant speed of light as it has no mass and therefore no inertia and therefore no relationship to any IFR. However it seems to be expressed as constant in all IFR's which I do not understand. This seems to say that if I am traveling at 1/2c and I shine a torch forward the light moved away from me at c and if I shine the light backwards it also travels away from me at c.
    This seems to say that, in the first case, the light is travelling away from the point in space that it is created (independent of my IFR), at 1.5c.
    To clarify this for me, my question is:
    If I am travelling towards a light source at .5c and I have two light detectors with a set space between them to measure the time that the light takes to transition from one to the other, will the time taken correspond to a speed of c? And, if I decrease my speed to .25c and do the same measurement will the measurement also indicate a speed of c?
     
  2. jcsd
  3. Jul 13, 2016 #2

    A.T.

    User Avatar
    Science Advisor
    Gold Member

    No, it's traveling at c in all frames.

     
  4. Jul 13, 2016 #3

    Orodruin

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    This is an experimental fact and so is not something you should set out to understand using your regular Galilei transformation. In fact, as you have discovered, it directly violates Galilei addition of velocities. The conclusion you should draw from this is that Galilei addition of velocities does not work in this extreme. Other conclusions such as the relativity of simultaneity follow in a relatively straight forward fashion.
     
  5. Jul 13, 2016 #4
    So you are saying that regardless of my speed, the measurement between to two detectors is always the same?
     
  6. Jul 13, 2016 #5

    Ibix

    User Avatar
    Science Advisor

    The point in space is a frame-dependent concept. Say your flashlights are on a table on a train. To someone on the train, the point in space where the light was emitted is a point just above the table. To someone standing beside the track, the point in space where the light was emitted is some point above the track where the flashlights happened to be when they emitted.

    The emission event is frame-independent, but you can't measure speed with respect to that.
     
  7. Jul 13, 2016 #6
    I do not set out to understand using Galilei transformation. In fact if you refer to my post I am clear that this does not happen (although it seems a logical, but incorrect, conclusion to the speed of light being a constant in all frames of reference, which by logic says that it is different between two frames of reference). But if I am approaching a source of light which is travelling at c and I am travelling at .5c the relationship between my detector and the source of light is changing at 1.5c, even although the light is travelling at c. There are many incidences where relationships change faster than the speed of light - e.g. phase relationships between travelling waves can move down a waveguide faster than the speed of light.
    There is no implication of adding velocities in this process.
     
  8. Jul 13, 2016 #7
    It is not the point in space that is frame dependent. It is the observers definition of that point in space relative to other factors.

    Which I guess is what I am saying - but if you are in the same frame of reference as the photons you can measure speed - but since you are not.....
     
  9. Jul 13, 2016 #8

    A.T.

    User Avatar
    Science Advisor
    Gold Member

    How did you calculate that 1.5c then?
     
  10. Jul 13, 2016 #9

    Ibix

    User Avatar
    Science Advisor

    How do you define a point without reference to other factors?

    An event is a point in spacetime. It doesn't have a velocity for you to compare an object's velocity to.

    Light doesn't have a reference frame for you to be in, so measuring speed if you were in it doesn't make sense.
     
  11. Jul 13, 2016 #10
    I am saying that that is the implication of the light travelling away from me at c, when it is travelling away from the point in space that it was created at c. These two things are incompatible and would require Galilei transformation to make it work.
     
  12. Jul 13, 2016 #11
    The event happens at a point whether or not you can define it

    That is correct, but if the event is defined as the emission of photons you can assume a velocity= c

    I guess that's still what I am saying.
     
  13. Jul 13, 2016 #12
    Just going back to my question, it seems that y'all are saying the answer is yes?
     
  14. Jul 13, 2016 #13

    Ibix

    User Avatar
    Science Advisor

    An event is a point in spacetime. There will come a time when you say that that event is in the past - it is not in the slice of spacetime you call "now". So you cannot measure a spatial distance to the event "now". You can only decide that some point in "now" is the same as the (spatial part of) the event. That choice is frame dependent - in fact, it's one definition of a choice of frame (up to spatial rotation).

    This is pure nonsense. An event is a point in spacetime. Velocity is the slope of a line in spacetime. A point does not have a slope and there is no way to define one for it. Simply "assuming" an undefined quantity has a particular value is meaningless.

    Then you are talking nonsense. There is no frame of reference for light - it's a contradiction in terms.
     
    Last edited: Jul 13, 2016
  15. Jul 13, 2016 #14

    Ibix

    User Avatar
    Science Advisor

    Everyone will always measure a time between the reception events consistent with the motion of the detectors (as measured in their frame) and the constant speed of light. Between length contraction, time dilation the relativity of simultaneity, and the different motion of the detectors in any other frame, everyone will always be able to come up with a consistent explanation for why everyone else also comes up with the same invariant speed of light.
     
  16. Jul 13, 2016 #15

    A.T.

    User Avatar
    Science Advisor
    Gold Member

    It's a numerical value. How did you calculate it exactly?
     
  17. Jul 13, 2016 #16
    Your response is not relevant. If the event is the result of turning on a torch (as defined) it is reasonable to assume that the event results in photon emission.

    I m sorry that you think this is nonsense. I was agreeing with you.

    'nuff said!
     
  18. Jul 13, 2016 #17
    Exactly? I added 1 and .5 and I got 1.5.

    Again, 'nuff said.
     
  19. Jul 13, 2016 #18
    That's Galilean relativity! It works only as an approximation in the limit of low speeds.

    The correct way is ##\frac{1+0.5}{1+(1)(0.5)}=\frac{1.5}{1.5}=1##.

    Google "relativistic velocity addition".
     
  20. Jul 14, 2016 #19

    Orodruin

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    In addition to what has been said already, one thing that confuses many people is the difference between separation speed and relative speed.

    If you are moving to the left with 0.5c relative to an observer A and a light signal travels to the right, then A will see the distance between you and the light growing with 1.5c. This is separation speed.

    The above does not mean that you will see the light moving at 1.5c! To draw that conclusion you must assume absolute space and time, which directly contradict SR. In fact, they are basic assumptions behind the Galilei transformation! The basic assumption in SR is that the light will have speed c in your inertial frame too. This is the relative speed.

    Also note that there is no way you can objectively say "I am moving at 0.5c" as velocities are relative and change between inertial frames. You need to specify relative to what you move at 0.5c.
     
  21. Jul 14, 2016 #20

    Ibix

    User Avatar
    Science Advisor

    In that case your writing is imprecise, because I'm having trouble reading you as agreeing with me even when you say you are. I think I shall duck out of this conversation for now.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted