Apr 17, 2006 #1 cscott Messages 778 Reaction score 1 Can I use integration by parts recursively on this? \int (xe^x)(x+1)^{-2}
Apr 17, 2006 #2 matt grime Science Advisor Homework Helper Messages 9,361 Reaction score 6 Have you tried?
Apr 17, 2006 #3 cscott Messages 778 Reaction score 1 Yeah ... = \frac{-xe^x}{x + 1} - \int \frac{e^x}{x + 1} \cdot dx Right so far?
Apr 17, 2006 #4 arildno Science Advisor Homework Helper Gold Member Dearly Missed Messages 10,119 Reaction score 138 Nope. \frac{d}{dx}xe^{x}=e^{x}(x+1) There is at least one other flaw with your work.
Apr 17, 2006 #5 cscott Messages 778 Reaction score 1 Oops... don't know what I was thinking there. I got it now, thanks.
Apr 17, 2006 #6 Orion1 Messages 961 Reaction score 3 cscott said: Can I use integration by parts recursively on this? Affirmative. Formula for integration by parts by Substitution Rule: \int u dv = uv - \int v du u = xe^x \; \; \; dv = \frac{1}{(x + 1)^2} dx du = e^x (x + 1) dx \; \; \; v = \left( - \frac{1}{x + 1} \right) \int (xe^x) \left[\frac{1}{(x + 1)^2} \right] dx = (xe^x) \left(-\frac{1}{x + 1} \right) - \int \left(-\frac{1}{x + 1} \right)[e^x(x + 1)] dx [/Color] Last edited: Apr 17, 2006
cscott said: Can I use integration by parts recursively on this? Affirmative. Formula for integration by parts by Substitution Rule: \int u dv = uv - \int v du u = xe^x \; \; \; dv = \frac{1}{(x + 1)^2} dx du = e^x (x + 1) dx \; \; \; v = \left( - \frac{1}{x + 1} \right) \int (xe^x) \left[\frac{1}{(x + 1)^2} \right] dx = (xe^x) \left(-\frac{1}{x + 1} \right) - \int \left(-\frac{1}{x + 1} \right)[e^x(x + 1)] dx [/Color]
Apr 18, 2006 #7 jacy Messages 76 Reaction score 0 Can this \int (xe^x) \left[\frac{1}{(x + 1)^2} \right] dx = (xe^x) \left(-\frac{1}{x + 1} \right) - \int \left(-\frac{1}{x + 1} \right)[e^x(x + 1)] dx be further simplified to \int (xe^x) \left[\frac{1}{(x + 1)^2} \right] dx = \frac {e^x}{x+1} Last edited: Apr 18, 2006
Can this \int (xe^x) \left[\frac{1}{(x + 1)^2} \right] dx = (xe^x) \left(-\frac{1}{x + 1} \right) - \int \left(-\frac{1}{x + 1} \right)[e^x(x + 1)] dx be further simplified to \int (xe^x) \left[\frac{1}{(x + 1)^2} \right] dx = \frac {e^x}{x+1}
Apr 19, 2006 #8 Orion1 Messages 961 Reaction score 3 Affirmative \left(xe^x\right)\left(-\frac{1}{x + 1}\right) - \int \left(-\frac{1}{x + 1}\right)\left[e^x\left(x + 1\right)\right] dx = - \frac{xe^x}{x + 1} + \int e^x dx - \frac{xe^x}{x + 1} + \int e^x dx = - \frac{xe^x}{x + 1} + e^x = e^x \left(- \frac{x}{x + 1} + 1\right) = \frac{e^x}{x + 1} \boxed{\int \left(xe^x\right)\left[\frac{1}{\left(x + 1\right)^2}\right] dx = \frac{e^x}{x + 1}} [/Color] Last edited: Apr 19, 2006
Affirmative \left(xe^x\right)\left(-\frac{1}{x + 1}\right) - \int \left(-\frac{1}{x + 1}\right)\left[e^x\left(x + 1\right)\right] dx = - \frac{xe^x}{x + 1} + \int e^x dx - \frac{xe^x}{x + 1} + \int e^x dx = - \frac{xe^x}{x + 1} + e^x = e^x \left(- \frac{x}{x + 1} + 1\right) = \frac{e^x}{x + 1} \boxed{\int \left(xe^x\right)\left[\frac{1}{\left(x + 1\right)^2}\right] dx = \frac{e^x}{x + 1}} [/Color]