Can I Use Substitution to Prove the Residue Theorem Integral?

Click For Summary

Homework Help Overview

The discussion revolves around proving that a specific integral equation equals zero, utilizing techniques from complex analysis, particularly the Residue Theorem and Cauchy's Integral Theorem. The original poster references two integral equations and seeks to understand whether substitution methods similar to those used in a previous example can be applied.

Discussion Character

  • Exploratory, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • The original poster contemplates using substitution to prove the integral's value, while others suggest considering an anti-derivative approach. There are discussions about the relevance of the method used by the professor and whether it aligns with the techniques discussed in previous examples.

Discussion Status

Participants are exploring different methods to approach the problem, with some expressing a preference for specific techniques over others. There is an ongoing dialogue about the efficiency of sharing methods and the potential for misunderstandings in the absence of clear communication about the professor's approach.

Contextual Notes

Participants note the importance of adhering to the professor's methods and the constraints of not revealing specific techniques, which may affect the flow of the discussion.

MatinSAR
Messages
673
Reaction score
204
Homework Statement
Prove Residue theorem.
Relevant Equations
Please see the following.
1719052715934.png

Integral 7.2 is ok. I must employ the integration technique used in 7.2 to prove that integral equation 7.1 equals zero. For n<0 we have : $$\sum_{n=- \infty}^{-2} a_n \oint (z-z_0)^ndz$$For n>0 we have : $$\sum_{n=0}^{\infty} a_n \oint (z-z_0)^ndz$$
According to Cauchy's Integral Theorem, since there are no singularities within contour C, the value of the second integral is zero. But for n<0 , ##(z-z_0)^n## isn't an analytic function so it can be unzero.

How can I show that this integral is also equal to zero? Can I show it by using the substitution ##z-z_0=re^{i\theta}## like 7.2? Or I should do sth more than this...
 
Physics news on Phys.org
Why don't you use the given anti-derivative?
 
  • Like
Likes   Reactions: MatinSAR
fresh_42 said:
Why don't you use the given anti-derivative?
Thank you for tour reply @fresh_42
Do you mean the anti-derivative term in equation 7.1?
If so, I prefer not to use that method because my professor used a different method, and I intend to use a similar approach to his. I recall that his method was similar to the approach in 7.2.
 
MatinSAR said:
Thank you for tour reply @fresh_42
Do you mean the anti-derivative term in equation 7.1?
Yes.
MatinSAR said:
If so, I prefer not to use that method because my professor used a different method, and I intend to use a similar approach to his. I recall that his method was similar to the approach in 7.2.
I don't think that would be a big difference, but let's see. I did the same as in 7.2. which you suggested in

\begin{align*} \oint_\gamma \dfrac{1}{z-z_0}\,dz&=\int_0^{2\pi}\dfrac{1}{re^{it}} \cdot ire^{it} \,dt=i\cdot \int_0^{2\pi}dt=2\pi i\\ \oint_\gamma \left(z-z_0\right)^p\,dz&\stackrel{(p\neq -1)}{=}\int_0^{2\pi} r^p e^{i p t} \cdot ire^{it}\,dt=ir^{p+1}\int_0^{2\pi} e^{i(p+1)t}\,dt\\ &=ir^{p+1}\left[\dfrac{e^{i(p+1)t}}{i(p+1)}\right]_0^{2\pi}=\dfrac{r^{p+1}}{p+1}(e^{2(p+1)\pi i t}-e^0)=0\,. \end{align*}

Reference: https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/

Was that what you meant?

Edit: The path here was
##\gamma(t)=z_0+re^{i t}\, , \,0\leq t\leq 2\pi##
and the path integral
\begin{align*} \int_\gamma f(z)\,dz &=…\text{ (substitution }z=\gamma(t)\, , \,dz=\gamma’\,dt) \\ …&=\int_a^b (f\circ \gamma )(t)\cdot \gamma’\,dt =\int_a^b f(\gamma (t))\cdot \gamma'(t)\,dt \end{align*}
 
Last edited:
  • Like
Likes   Reactions: MatinSAR
MatinSAR said:
my professor used a different method, and I intend to use a similar approach
But you aren't going to tell us what it is, hoping we hit on it by accident? That seems...inefficient and likely slow.
 
  • Like
Likes   Reactions: MatinSAR
fresh_42 said:
Yes.

I don't think that would be a big difference, but let's see. I did the same as in 7.2. which you suggested in

\begin{align*} \oint_\gamma \dfrac{1}{z-z_0}\,dz&=\int_0^{2\pi}\dfrac{1}{re^{it}} \cdot ire^{it} \,dt=i\cdot \int_0^{2\pi}dt=2\pi i\\ \oint_\gamma \left(z-z_0\right)^p\,dz&\stackrel{(p\neq -1)}{=}\int_0^{2\pi} r^p e^{i p t} \cdot ire^{it}\,dt=ir^{p+1}\int_0^{2\pi} e^{i(p+1)t}\,dt\\ &=ir^{p+1}\left[\dfrac{e^{i(p+1)t}}{i(p+1)}\right]_0^{2\pi}=\dfrac{r^{p+1}}{p+1}(e^{2(p+1)\pi i t}-e^0)=0\,. \end{align*}

Reference: https://www.physicsforums.com/insights/an-overview-of-complex-differentiation-and-integration/

Was that what you meant?
It seems similar enough to my professor's method for me to use in the exam. I wrote something similar to this as well. Thank you for your time @fresh_42
Vanadium 50 said:
But you aren't going to tell us what it is, hoping we hit on it by accident? That seems...inefficient and likely slow.
Hello. I wasn't expecting mind reading. I was just looking for a similar approach, like what was mentioned above.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K