Can I write this integral in "closed-form" expression?

EngWiPy
Messages
1,361
Reaction score
61
Hi all,

I have this integral, and I wish to write it in a closed-form in order to be able to program it. The integral is:

\int_{-\infty}^{\infty}e^{j2\pi f_c[a^{(u)}-a^{(m)}]}g(t[1+a^{(m)}]-kT_s-\tau_p^{(m,n)}) g(t[1+a^{(u)}]-lT_s-\tau_q^{(u,n)})\,dt

where

g(t)=\left\{\begin{array}{cc}1&t\in[0,T_s)\\0&\mbox{Otherwise}\end{array}\right.

Basically, I can write two different cases, namely, when:

\frac{kT_s+\tau_p^{(m,n)}}{1+a^{(m)}}\leq \frac{lT_s+\tau_q^{(u,n)}}{1+a^{(u)}}<\frac{(k+1)T_s+\tau_p^{(m,n)}}{1+a^{(m)}}

and when

\frac{lT_s+\tau_q^{(u,n)}}{1+a^{(u)}}\leq \frac{kT_s+\tau_p^{(m,n)}}{1+a^{(m)}}<\frac{(l+1)T_s+\tau_q^{(u,n)}}{1+a^{(u)}}

and solve the integral for these two separate cases. However, this requires me to check for every possible case separately which is taking too long time. I was hoping if I can write it as one expression which eases the programming part.

Thanks
 
Physics news on Phys.org
I'm sorry you are not generating any responses at the moment. Is there any additional information you can share with us? Any new findings?
 
S_David said:
Hi all,

I have this integral, and I wish to write it in a closed-form in order to be able to program it. The integral is:

\int_{-\infty}^{\infty}e^{j2\pi f_c[a^{(u)}-a^{(m)}]}g(t[1+a^{(m)}]-kT_s-\tau_p^{(m,n)}) g(t[1+a^{(u)}]-lT_s-\tau_q^{(u,n)})\,dt

where

g(t)=\left\{\begin{array}{cc}1&t\in[0,T_s)\\0&\mbox{Otherwise}\end{array}\right.
Simplifying that a bit, you have \int_{-\infty}^{\infty} c g_1(t) g_2(t)\, dt where
\begin{aligned}<br /> c &amp;= e^{j2\pi f_c[a^{(u)}-a^{(m)}]} \\<br /> g_1(t) &amp;= g(t[1+a^{(m)}]-kT_s-\tau_p^{(m,n)}) \\<br /> g_2(t) &amp;= g(t[1+a^{(u)}]-lT_s-\tau_q^{(u,n)})<br /> \end{aligned}
That constant c=e^{j2\pi f_c[a^{(u)}-a^{(m)}]}[/tex] can be pulled out of the integral, and you&#039;re left with the integral of the product of two indicator functions. Each of those indicator functions is fairly simple (but messy): They describe a finite interval on the real number line. So the integral is just the constant <i>c</i> times the length of the intersection of these two intervals. I&#039;ll use a to denote the interval corresponding to g_1(t) and b to denote the nterval corresponding to g_2(t):<br /> <br /> \begin{aligned}&lt;br /&gt; a &amp;amp;= \left(\frac{kT_s+\tau_p^{(m,n)}}{1+a^{(m)}},&lt;br /&gt; \frac{(k+1)T_s+\tau_p^{(m,n)}}{1+a^{(m)}}\right) \\&lt;br /&gt; b &amp;amp;= \left(\frac{lT_s+\tau_q^{(u,n)}}{1+a^{(u)}},&lt;br /&gt; \frac{(l+1)T_s+\tau_q^{(u,n)}}{1+a^{(u)}}\right)&lt;br /&gt; \end{aligned}<br /> <br /> That&#039;s a bit messy yet. I&#039;ll define four items to represent those endpoints:<br /> \begin{aligned}&lt;br /&gt; a_1 &amp;amp;= \frac{kT_s+\tau_p^{(m,n)}}{1+a^{(m)}} \\&lt;br /&gt; a_2 &amp;amp;= \frac{(k+1)T_s+\tau_p^{(m,n)}}{1+a^{(m)}} \\&lt;br /&gt; b_1 &amp;amp;= \frac{lT_s+\tau_q^{(u,n)}}{1+a^{(u)}} \\&lt;br /&gt; b_2 &amp;amp;= \frac{(l+1)T_s+\tau_q^{(u,n)}}{1+a^{(u)}}\end{aligned}<br /> With this, the intervals simplify to<br /> \begin{aligned}&lt;br /&gt; a &amp;amp;= (a_1, a_2) \\&lt;br /&gt; b &amp;amp;= (b_1, b_2)&lt;br /&gt; \end{aligned}<br /> <br /> <blockquote data-attributes="" data-quote="" data-source="" class="bbCodeBlock bbCodeBlock--expandable bbCodeBlock--quote js-expandWatch"> <div class="bbCodeBlock-content"> <div class="bbCodeBlock-expandContent js-expandContent "> Basically, I can write two different cases, namely, when:<br /> <br /> \frac{kT_s+\tau_p^{(m,n)}}{1+a^{(m)}}\leq \frac{lT_s+\tau_q^{(u,n)}}{1+a^{(u)}}&amp;lt;\frac{(k+1)T_s+\tau_p^{(m,n)}}{1+a^{(m)}}<br /> <br /> and when<br /> <br /> \frac{lT_s+\tau_q^{(u,n)}}{1+a^{(u)}}\leq \frac{kT_s+\tau_p^{(m,n)}}{1+a^{(m)}}&amp;lt;\frac{(l+1)T_s+\tau_q^{(u,n)}}{1+a^{(u)}} </div> </div> </blockquote><br /> You missed four cases. Here are all six, depicted in ASCII art. In all cases, I&#039;m portraying interval <i>a</i> above and interval <i>b</i> below the real number line, and the intersection between intervals <i>a</i> and <i>b</i> below the line displaying interval <i>b</i>.<br /> <div class="bbCodeBlock bbCodeBlock--screenLimited bbCodeBlock--code"> <div class="bbCodeBlock-title"> <i class="fa--xf fal fa-code "><svg xmlns="http://www.w3.org/2000/svg" role="img" aria-hidden="true" ><use href="/data/local/icons/light.svg?v=1756418028#code"></use></svg></i> Code: </div> <div class="bbCodeBlock-content" dir="ltr"> <pre class="bbCodeCode" dir="ltr" data-xf-init="code-block" data-lang=""><code> ( a ) Case 1: ------------------------------------&gt; ( b ) Intersection is null ( a ) Case 2: ------------------------------------&gt; ( b ) ( a∩b ) ( a ) Case 3: ------------------------------------&gt; ( b ) ( a∩b ) ( a ) Case 4: ------------------------------------&gt; ( b ) ( a∩b ) ( a ) Case 5: ------------------------------------&gt; ( b ) ( a∩b ) ( a ) Case 6: ------------------------------------&gt; ( b ) Intersection is null</code></pre> </div> </div><br /> All you need is the length of that intersection. This is actually quite easy: it&#039;s d=\max(0, \min(a_2,b_2) - \max(a_1,b_1)). That outer max protects against a negative length, which is what would otherwise in the case of a null intersection.
 
Last edited:
I am really thankful of your effort, but I have a typo in my post where the integral is actually:

\int_{-\infty}^{\infty}e^{j2\pi f_c[a^{(u)}-a^{(m)}]t}g(t[1+a^{(m)}]-kT_s-\tau_p^{(m,n)}) g(t[1+a^{(u)}]-lT_s-\tau_q^{(u,n)})\,dt

where the exponential is a function of t, otherwise I wouldn't have put it inside the integral. This is actually what complicates the integration. Now, in its presence can I find something similar to what you had without it?

D H said:
Simplifying that a bit, you have \int_{-\infty}^{\infty} c g_1(t) g_2(t)\, dt where
\begin{aligned}<br /> c &amp;= e^{j2\pi f_c[a^{(u)}-a^{(m)}]} \\<br /> g_1(t) &amp;= g(t[1+a^{(m)}]-kT_s-\tau_p^{(m,n)}) \\<br /> g_2(t) &amp;= g(t[1+a^{(u)}]-lT_s-\tau_q^{(u,n)})<br /> \end{aligned}
That constant c=e^{j2\pi f_c[a^{(u)}-a^{(m)}]}[/tex] can be pulled out of the integral, and you&#039;re left with the integral of the product of two indicator functions. Each of those indicator functions is fairly simple (but messy): They describe a finite interval on the real number line. So the integral is just the constant <i>c</i> times the length of the intersection of these two intervals. I&#039;ll use a to denote the interval corresponding to g_1(t) and b to denote the nterval corresponding to g_2(t):<br /> <br /> \begin{aligned}&lt;br /&gt; a &amp;amp;= \left(\frac{kT_s+\tau_p^{(m,n)}}{1+a^{(m)}},&lt;br /&gt; \frac{(k+1)T_s+\tau_p^{(m,n)}}{1+a^{(m)}}\right) \\&lt;br /&gt; b &amp;amp;= \left(\frac{lT_s+\tau_q^{(u,n)}}{1+a^{(u)}},&lt;br /&gt; \frac{(l+1)T_s+\tau_q^{(u,n)}}{1+a^{(u)}}\right)&lt;br /&gt; \end{aligned}<br /> <br /> That&#039;s a bit messy yet. I&#039;ll define four items to represent those endpoints:<br /> \begin{aligned}&lt;br /&gt; a_1 &amp;amp;= \frac{kT_s+\tau_p^{(m,n)}}{1+a^{(m)}} \\&lt;br /&gt; a_2 &amp;amp;= \frac{(k+1)T_s+\tau_p^{(m,n)}}{1+a^{(m)}} \\&lt;br /&gt; b_1 &amp;amp;= \frac{lT_s+\tau_q^{(u,n)}}{1+a^{(u)}} \\&lt;br /&gt; b_2 &amp;amp;= \frac{(l+1)T_s+\tau_q^{(u,n)}}{1+a^{(u)}}\end{aligned}<br /> With this, the intervals simplify to<br /> \begin{aligned}&lt;br /&gt; a &amp;amp;= (a_1, a_2) \\&lt;br /&gt; b &amp;amp;= (b_1, b_2)&lt;br /&gt; \end{aligned}<br /> <br /> <br /> <br /> You missed four cases. Here are all six, depicted in ASCII art. In all cases, I&#039;m portraying interval <i>a</i> above and interval <i>b</i> below the real number line, and the intersection between intervals <i>a</i> and <i>b</i> below the line displaying interval <i>b</i>.<br /> <div class="bbCodeBlock bbCodeBlock--screenLimited bbCodeBlock--code"> <div class="bbCodeBlock-title"> <i class="fa--xf fal fa-code "><svg xmlns="http://www.w3.org/2000/svg" role="img" aria-hidden="true" ><use href="/data/local/icons/light.svg?v=1756418028#code"></use></svg></i> Code: </div> <div class="bbCodeBlock-content" dir="ltr"> <pre class="bbCodeCode" dir="ltr" data-xf-init="code-block" data-lang=""><code> ( a ) Case 1: ------------------------------------&gt; ( b ) Intersection is null ( a ) Case 2: ------------------------------------&gt; ( b ) ( a∩b ) ( a ) Case 3: ------------------------------------&gt; ( b ) ( a∩b ) ( a ) Case 4: ------------------------------------&gt; ( b ) ( a∩b ) ( a ) Case 5: ------------------------------------&gt; ( b ) ( a∩b ) ( a ) Case 6: ------------------------------------&gt; ( b ) Intersection is null</code></pre> </div> </div><br /> All you need is the length of that intersection. This is actually quite easy: it&#039;s d=\max(0, \min(a_2,b_2) - \max(a_1,b_1)). That outer max protects against a negative length, which is what would otherwise in the case of a null intersection.
 
S_David said:
I am really thankful of your effort, but I have a typo in my post where the integral is actually:

\int_{-\infty}^{\infty}e^{j2\pi f_c[a^{(u)}-a^{(m)}]t}g(t[1+a^{(m)}]-kT_s-\tau_p^{(m,n)}) g(t[1+a^{(u)}]-lT_s-\tau_q^{(u,n)})\,dt

where the exponential is a function of t, otherwise I wouldn't have put it inside the integral. This is actually what complicates the integration. Now, in its presence can I find something similar to what you had without it?
It doesn't complicate it by much. Those g(αt+β) are either zero or one, so instead of a length times a constant you get

\int_{\max(a_1, b_1)}^{\min(a_2,b_2)} \exp(j\omega t)\,dt

Here I've collapsed that big messy constant of yours into a single constant, \omega. That's an easy integral. There is one tricky issue now: You have to watch out for the two null cases. The above is correct only if there is a non-null intersection.
 
Back
Top