MHB Can Isosceles Triangles Solve This Geometry Problem?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Geometry
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 5803
I tried about an hour to solve this but couldn't get the ratios to work I assume there are isoseles triangles in this but that is just observation
 

Attachments

  • image.jpg
    image.jpg
    26.9 KB · Views: 114
Mathematics news on Phys.org
I do not believe that there is enough information here to provide a solution. You need an additional fact, such as for example the length of the sides of the square.

The point $P$ must lie on an Apollonius circle with its centre on the line $BD$. (That is the set of all points for which the distances $PD$ and $PB$ are in the ratio 5 to 6.)

The area of the triangle $APC$ is half the diagonal $AC$ times the distance of $P$ from $AC$. But unless you know the length of that diagonal you cannot fix the position of $P$ or the lengths $PB$ and $PD$.

Edit. ILS's neat solution below shows that I was wrong. I was trying to determine the position of the point $P$, and it's true that this cannot be determined without further information. But the lengths $PB$ and $PD$ are uniquely determined, which I find quite surprising.
 
Last edited:
Sorry Opalg, I'm afraid I have to disagree. (Wink)

Let's say the square has side $s$.
Let's pick $A$ at the origin $O$.
And lets' pick $P=(p,q)$.
Then $A=(0,0), B=(s,0), C=(s,s), D=(0,s)$.

The triangle $ACP$ has area:
$$\frac 12 \| \vec{AP} \times \vec{AC} \| = \frac 12 \| \vec{OP} \times \vec{OC} \| = \frac 12 |ps-qs| = 19 \tag 1$$
The other equations yield:
$$PD=15x \quad\Rightarrow\quad p^2 + (s-q)^2 = (15x)^2 \quad\Rightarrow\quad p^2+q^2+s^2 - 2qs = 225x^2 \tag 2$$
$$PB=18x \quad\Rightarrow\quad (s-p)^2 + q^2 = (18x)^2 \quad\Rightarrow\quad p^2+q^2+s^2 - 2ps = 324x^2 \tag 3$$

Subtract $(2)$ from $(3)$:
$$-2ps + 2qs = 99x^2$$

Combine with $(1)$:
$$4 \cdot 19 = 99x^2 \quad\Rightarrow\quad x = \sqrt{\frac{4\cdot 19}{99}} = \frac 23\sqrt{\frac{19}{11}}$$
 
wow thank you

I spent another 2 hours on this but couldn't make those conections

I found this on G+ but everyone was giving up. but here it got solved.😎
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top