MHB Can Isosceles Triangles Solve This Geometry Problem?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Geometry
Click For Summary
The discussion centers on the challenge of solving a geometry problem involving isosceles triangles and the positioning of point P on an Apollonius circle. One participant struggled to find the necessary ratios and concluded that additional information, such as the length of the square's sides, is required for a solution. Another contributor clarified that while the exact position of point P cannot be determined without more data, the lengths PB and PD can be uniquely identified. The conversation highlights the complexity of the problem and the collaborative effort to reach a resolution. Ultimately, the problem was successfully solved, demonstrating the value of persistence in tackling geometric challenges.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 5803
I tried about an hour to solve this but couldn't get the ratios to work I assume there are isoseles triangles in this but that is just observation
 

Attachments

  • image.jpg
    image.jpg
    26.9 KB · Views: 124
Mathematics news on Phys.org
I do not believe that there is enough information here to provide a solution. You need an additional fact, such as for example the length of the sides of the square.

The point $P$ must lie on an Apollonius circle with its centre on the line $BD$. (That is the set of all points for which the distances $PD$ and $PB$ are in the ratio 5 to 6.)

The area of the triangle $APC$ is half the diagonal $AC$ times the distance of $P$ from $AC$. But unless you know the length of that diagonal you cannot fix the position of $P$ or the lengths $PB$ and $PD$.

Edit. ILS's neat solution below shows that I was wrong. I was trying to determine the position of the point $P$, and it's true that this cannot be determined without further information. But the lengths $PB$ and $PD$ are uniquely determined, which I find quite surprising.
 
Last edited:
Sorry Opalg, I'm afraid I have to disagree. (Wink)

Let's say the square has side $s$.
Let's pick $A$ at the origin $O$.
And lets' pick $P=(p,q)$.
Then $A=(0,0), B=(s,0), C=(s,s), D=(0,s)$.

The triangle $ACP$ has area:
$$\frac 12 \| \vec{AP} \times \vec{AC} \| = \frac 12 \| \vec{OP} \times \vec{OC} \| = \frac 12 |ps-qs| = 19 \tag 1$$
The other equations yield:
$$PD=15x \quad\Rightarrow\quad p^2 + (s-q)^2 = (15x)^2 \quad\Rightarrow\quad p^2+q^2+s^2 - 2qs = 225x^2 \tag 2$$
$$PB=18x \quad\Rightarrow\quad (s-p)^2 + q^2 = (18x)^2 \quad\Rightarrow\quad p^2+q^2+s^2 - 2ps = 324x^2 \tag 3$$

Subtract $(2)$ from $(3)$:
$$-2ps + 2qs = 99x^2$$

Combine with $(1)$:
$$4 \cdot 19 = 99x^2 \quad\Rightarrow\quad x = \sqrt{\frac{4\cdot 19}{99}} = \frac 23\sqrt{\frac{19}{11}}$$
 
wow thank you

I spent another 2 hours on this but couldn't make those conections

I found this on G+ but everyone was giving up. but here it got solved.😎
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K