Can K⊕K ≅ N⊕N Imply K ≅ N in Finite Abelian Groups?

  • Thread starter Thread starter Bachelier
  • Start date Start date
  • Tags Tags
    Isomorphism
Bachelier
Messages
375
Reaction score
0
All groups are finite abelian

if K⊕K ≅ N⊕N, prove that K≅N

I'm thinking of constructing bijection, but I don't know if my argument makes sense!

since K⊕K ≅ N⊕N, there exists a bij between the two

assume ψ: K⊕K ----> N⊕N
(k,k') |---> (n,n') where n = f(k) for some fct f and n' = g(k')

since ψ is a bij it is invertible, hence f is invertible and then it is a bijection

or:

since ψ is a homomorphism, then so is f b/c ψ(kk',k"k'")=(nn',n"n"')=(f(k),f(k'),g(k'')g(k'''))=(f(kk'),g(k"k'''))

and f is onto inherited from ψ. ker ψ = ψ(e,e)=(e,e) in (N⊕N) = ker(f,g)

I don't like it but it's the only thing I can think of.

any ideas. thanks
 
Physics news on Phys.org
do you know the decomposition theorem for finite abelian groups?
 
in other words, the fundamental thm of finite abelian groups,

every fin. ab. grp G is the direct sum of cyclic groups, each of prime power order.

let G = K⊕K ≅ N⊕N = G'

by thm K and N are both cyclic. hence K= <k> and N = <n> with |<k>| = |<n>|

hence K ≅ N.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top