I'm really out of my depth on most math questions, so I try to avoid them. But I do know something about using calculus of variations for the Schrödinger equation via the Ritz variational method, so I'll say what I know coming from that standpoint:
Obviously the criteria for being able to use the method depends on having an inequality such that some parameter is minimized for the solution you're looking for, and second, that you can formulate a Lagrange function for it. And third, which is probably the big caveat, the practicality of doing so: That the corresponding variational problem is, in fact, simpler than solving the problem by other methods. (As for proving the existence of a corresponding variational problem for any D.E., I have no idea. My hunch is: No, probably not.)
In the case of the S.E. calculating ground-state energies is naturally an important subset of problems, minimizing <E> while varying Ψ. And the most-used quantum chemical methods for ground states all do this. But if you want excited states, then there's no easy Lagrangian or parameter unless you make approximations, which get worse with increasingly excited states.
So in practice, the variational method is almost always used for ground state energies and almost never used for excited states. Which goes to show how the usefulness of the method can vary greatly for same problem, with different conditions.