Can Mathematical Manipulations Validate the Work-Energy Theorem?

AI Thread Summary
The discussion revolves around the mathematical manipulations related to the work-energy theorem in physics. The original poster questions the validity of their equations, specifically how they derive relationships between displacement, velocity, and acceleration. They express confusion over the appearance of the 1/2 factor in the work-energy theorem, which states that work done equals half the mass times the velocity squared. Responses clarify that the calculations are flawed, particularly in equating average velocity with instantaneous velocity, which leads to the misunderstanding of the factor of 1/2. The key takeaway is that the average speed during constant acceleration differs from instantaneous speed, impacting the work-energy relationship.
DiracPool
Messages
1,242
Reaction score
515
There’s a mathematical physics question I have that’s been bugging me lately. I’m not a mathematician so I don’t know if my logic is mathematically “legal” or sound.

Part 1

1. Say we restrict ourselves to one dimension and define a spatial coordinate, x. Then we square it, so now we have x^2.

2. Now we make an equation of it, x^2 = x^2.

3. Now I want to divide each side by 1/t^2, yielding (x^2)/(t^2) = (x/t)(x/t) = v^2, where v=velocity.

Does that look ok so far, can I do that operation?

4. Now I want to redo step 3 in a different manner. Instead of what I wrote above, I want to do the following: divide each side by 1/t^2, yielding (x^2)/(t^2) = (x/t^2) (x) = (a)(x), where a=acceleration and x=spatial displacement along the x coordinate.

My question is, can I take my choice as to how I can split up the time variables on the RHS of the equation in both 3 and 4 given what’s on the left?

5. What about the differential form of 3 and 4? Can I write the RHS version of 3 as (dx/dt)(dx/dt), and version 4 as (d^2x/dt^2)(dx)?Part 2

I’m interested in the math aspect of the equation but it was the work energy theorem that got me thinking about it. Through a few mathematical tricks I can comfortably follow, the work energy theorem gives you a kinetic energy term, ½ mv^2 from the work term, or, Force times distance (m)(a)(x) = ½(m)(v^2), where m is mass, v is velocity, a is acceleration, and x is spatial displacement.

Now, if we add a mass term to my equation 3 above in part 1, you get mv^2, and if you add that same mass term to equation 4 you get (m)(a)(x), or the work term.

So, if it isn’t obvious already, my conundrum here is that, from my mathematical tinkering in numbers 1-4 above in part 1, I came up with an equivalence (m)(a)(x) = mv^2, but the work-energy theorem tells us that (m)(a)(x) = 1/2mv^2. Where did that extra ½ term come from?
 
Physics news on Phys.org
DiracPool said:
There’s a mathematical physics question I have that’s been bugging me lately. I’m not a mathematician so I don’t know if my logic is mathematically “legal” or sound.

Part 1

1. Say we restrict ourselves to one dimension and define a spatial coordinate, x. Then we square it, so now we have x^2.

2. Now we make an equation of it, x^2 = x^2.

3. Now I want to divide each side by 1/t^2, yielding (x^2)/(t^2) = (x/t)(x/t) = v^2, where v=velocity.

Does that look ok so far, can I do that operation?

4. Now I want to redo step 3 in a different manner. Instead of what I wrote above, I want to do the following: divide each side by 1/t^2, yielding (x^2)/(t^2) = (x/t^2) (x) = (a)(x), where a=acceleration and x=spatial displacement along the x coordinate.

My question is, can I take my choice as to how I can split up the time variables on the RHS of the equation in both 3 and 4 given what’s on the left?

5. What about the differential form of 3 and 4? Can I write the RHS version of 3 as (dx/dt)(dx/dt), and version 4 as (d^2x/dt^2)(dx)?Part 2

I’m interested in the math aspect of the equation but it was the work energy theorem that got me thinking about it. Through a few mathematical tricks I can comfortably follow, the work energy theorem gives you a kinetic energy term, ½ mv^2 from the work term, or, Force times distance (m)(a)(x) = ½(m)(v^2), where m is mass, v is velocity, a is acceleration, and x is spatial displacement.

Now, if we add a mass term to my equation 3 above in part 1, you get mv^2, and if you add that same mass term to equation 4 you get (m)(a)(x), or the work term.

So, if it isn’t obvious already, my conundrum here is that, from my mathematical tinkering in numbers 1-4 above in part 1, I came up with an equivalence (m)(a)(x) = mv^2, but the work-energy theorem tells us that (m)(a)(x) = 1/2mv^2. Where did that extra ½ term come from?
You've assumed constant speed and a non zero acceleration. In general ##\frac{x}{t} \neq v ## and similarly ##\frac{x}{t^2} \neq a ##
 
Loosely speaking (very loosely!) the factor of 1/2 appears because the speed of an object undergoing constant acceleration from rest for a time ##t## is ##v(t)=at## but its average speed over that time is ##at/2##.

The problem with your calculation is that it's not correct to say that ##v=x/t## - if it were, the speed of an object would change according to which point you choose to be ##x=0##. You can say that the average velocity is ##\Delta{x} / \Delta{t}## but that doesn't tell you anything about the speed at any given moment.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...

Similar threads

Back
Top