Can Multivariable Interpolation Relate Three Sets of Data Points?

KV-1
Messages
16
Reaction score
1
Hello!

I am wondering if it is possible to establish a relationship between three sets of points (x,y,z) by interpolating.

Basically i need a function that takes x and y and gives me a z that matches the following points:


130 472 5
130 590 6
130 738 7.5
130 944 10
155 563 5
155 704 6
155 880 7.5
155 1126 10
180 654 5
180 817 6
180 1022 7.5
180 1308 10
205 745 5
205 931 6
205 1163 7.5
205 1489 10
240 872 5
240 1472 8

I want the middle column to be yielded by the equation when the outer columns are fed into it.. ex (first point): f(130,5) = 472

is this possible? if so, are there any calculators that you recommend or methods that don't require very complex math? (I only know calculus).

thanks!
 
Mathematics news on Phys.org
Well, let's say you had a function that is just from R to R. That is, it takes in one variable and spits out a number. If you had n points at which you knew the value of the function, then you can construct an n-1 degree polynomial that will pass through each of those points, and this polynomial is unique. Now, you have what looks to be 4 x values and 4 y values. Now, you should be able to construct a polynomial in the two variables x,y that is of degree 3. That is, it has the form: p(x,y) = a_{3,3}x^3y^3 + \cdots + a_{3,0}x^3 + a_{2,3}x^2y^3 + \cdots a_{2,0}x^2 + \cdots a_{0,3}y^3 + \cdots a_{0,0}, where you can find the values of the coeficitnts a_{i,j} by solving a system of 16 equations (using the 16 data points you have.) Now, I can show you how to set this up, but I am not sure how well something like this will interpolate. I know that it will interpolate exactly to each of you data points, but I don't know enough theory to be able to predict how it will behave in between those points.
 
Oh thanks!

Not sure though, I think I found some equations that give me the desired points without having to interpolate though...

It helps to know how this can be done though!
 
Hey KV-1 and welcome to the forums.

Are you aware of integral transforms, especially on multi-dimensional spaces?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top