mathboy20
- 27
- 0
Let F be the label of an non-empty set and let (B_m)_{m \geq 1} be elements in 2^F
Then I need to prove the following:
\mathrm{lim}_{m} \ \mathrm{sup} \ B_{m} = \mathrm{lim}_{m} \ \mathrm{inf} \ \mathrm{B_m} = \cup _{m= 1} ^{\infty} B_{m}
if B_{m} \uparrow which implies that B_{m} \subseteq B_{m+1} for all m \geq 1 and
\mathrm{lim}_{m} \ \mathrm{sup} \ B_{m} = \mathrm{lim}_{m} \ \mathrm{inf} \ \mathrm{B_m} = \cap _{m= 1} ^{\infty} B_{m}
if B_{m} \downarrow which means that B_m \supseteq B_{m+1} for all m \geq 1
how do I go about proving this? Do I need to show the infimum of F first?
Sincerely
mb20
Then I need to prove the following:
\mathrm{lim}_{m} \ \mathrm{sup} \ B_{m} = \mathrm{lim}_{m} \ \mathrm{inf} \ \mathrm{B_m} = \cup _{m= 1} ^{\infty} B_{m}
if B_{m} \uparrow which implies that B_{m} \subseteq B_{m+1} for all m \geq 1 and
\mathrm{lim}_{m} \ \mathrm{sup} \ B_{m} = \mathrm{lim}_{m} \ \mathrm{inf} \ \mathrm{B_m} = \cap _{m= 1} ^{\infty} B_{m}
if B_{m} \downarrow which means that B_m \supseteq B_{m+1} for all m \geq 1
how do I go about proving this? Do I need to show the infimum of F first?
Sincerely
mb20
Last edited: