Can Quantum Mechanics Define a Proper Reference Frame for Particles?

  • Thread starter Thread starter Athe
  • Start date Start date
Athe
Messages
4
Reaction score
0
If we consider a system (say an electron) with respect his own reference frame, we find that it is placed in an exact position (let's say the origin) and it has an exact momentum (it is at rest with respect to his own reference frame); due the very definition of such reference frame.

HEISENBERG O_O

Quantum mechanics excludes the existence of proper reference frames?. If so, what happens with proper time?. Can we talk about simultaneity when dealing with quantum mechanics? Do 'simultaneous measurements' (of non-cunmuting observables or whatever) have sense?
 
Physics news on Phys.org
Athe said:
If we consider a system (say an electron) with respect his own reference frame, we find that it is placed in an exact position (let's say the origin) and it has an exact momentum (it is at rest with respect to his own reference frame); due the very definition of such reference frame.

HEISENBERG O_O

Quantum mechanics excludes the existence of proper reference frames?. If so, what happens with proper time?. Can we talk about simultaneity when dealing with quantum mechanics? Do 'simultaneous measurements' (of non-cunmuting observables or whatever) have sense?

The problem here is that you made an explicit assumption that is your starting point which is not substantiated by evidence. You have made an explicit assumption that an "electron" is a point object like a tennis ball that can be defined clearly as to where it is in such a way that you can transform to its reference frame. How are you sure this is valid when there's plenty of indication that a "smearing" of position simultaneously can also be interpreted for the electron? Look at H2 bonding or even atomic orbitals for examples.

When you start off with the wrong premise, then any kinds of nonsensical conclusion can be possible. We don't have such luxury in physics. The parameters and scenario that we can use must be based on some ground of something realistic. Unrealistic assumption will result in unrealistic results.

Zz.
 
ZapperZ said:
The problem here is that you made an explicit assumption that is your starting point which is not substantiated by evidence. You have made an explicit assumption that an "electron" is a point object like a tennis ball that can be defined clearly as to where it is in such a way that you can transform to its reference frame. How are you sure this is valid when there's plenty of indication that a "smearing" of position simultaneously can also be interpreted for the electron? Look at H2 bonding or even atomic orbitals for examples.
QUOTE]


I don't want to complain, I just want answers. I want to study a quantum system of two particles in a minkowskian space-time, and I have just realized I have no clue of how to draw their universe lines. I want to perform a simultaneous measurement in each of them, first simultaneous with respect the laboratory frame and then with respect an inertial frame moving with velocity v respect to the former.'Classically', the particles are at rest respect to the lab frame, separated by a space-like interval. But with Heisenberg operating...
How do quantum mechanics define the proper reference frame of a system?
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top