- #1
Syrus
- 214
- 0
Homework Statement
Prove: If σ is a cycle of odd length, then σ2 is a cycle.
Homework Equations
N/A
The Attempt at a Solution
Proof: Assume σ is a cycle of odd length. Then let us model σ as (1 2 3 4 ... 2k +1) for some integer k [assuming here that the fixed elements of σ are those such that 2k + 1 < i]. Note then that σ2 = (1 2 3 4 ... 2k +1)(1 2 3 4 ... 2k +1), which we may otherwise define as σ2(i) = {i + 2, i ≤ 2k - 1; 1, i = 2k; 2, i = 2k + 1; i, 2k + 1 < i}. Hence, the elements 1,2,3,4,...,2k + 1 of σ remain fixed in a cycle, and so σ2 is indeed also a cycle.