ManishR
- 88
- 0
Consider mass m_{1}and m_{2}with position vector (from an inertial frame) \overrightarrow{x_{1}} and \overrightarrow{x_{2}} respectively and distance between them be x_{0}.
m_{1}\frac{d^{2}}{dt^{2}}\overrightarrow{x_{1}}=\overrightarrow{F}
\Rightarrow m_{1}\frac{d^{2}}{dt^{2}}(\overrightarrow{x_{2}}-\overrightarrow{x_{0}})=\overrightarrow{F} because its assumed that \overrightarrow{x_{1}}-\overrightarrow{x_{2}}=\overrightarrow{x_{0}}
\Rightarrow-\overrightarrow{F}\frac{m_{1}}{m_{2}}+m_{1}\frac{d^{2}}{dt^{2}}\overrightarrow{x_{0}}=\overrightarrow{F} because m_{2}\frac{d^{2}}{dt^{2}}\overrightarrow{x_{2}}=-\overrightarrow{F}
\Rightarrow m_{1}\frac{d^{2}}{dt^{2}}\overrightarrow{x_{0}}=\overrightarrow{F}(1+\frac{m_{1}}{m_{2}})
\Rightarrow\left(m_{1}\frac{d^{2}}{dt^{2}}x_{0}\right)\hat{x_{0}}=\overrightarrow{F}(1+\frac{m_{1}}{m_{2}}) because its assumed that \frac{d\hat{x_{0}}}{dt}=0
\Rightarrow m_{1}\frac{d^{2}}{dt^{2}}x_{0}=F(1+\frac{m_{1}}{m_{2}}) because \overrightarrow{x_{1}}-\overrightarrow{x_{2}}=\overrightarrow{x_{0}}\Leftrightarrow\hat{x_{0}}=\hat{F}, F = Gravitational Force
\Rightarrow m_{1}\int_{x_{i}}^{x_{f}}\frac{d^{2}}{dt^{2}}x_{0}dx_{0}=(1+\frac{m_{1}}{m_{2}})\int_{x_{i}}^{x_{f}}Fdx_{0} because normally we have F as F(x_{0}).
\Rightarrow\left.\frac{1}{2}m_{1}v^{2}\right|_{v=v_{i}}^{v=v_{f}}=(1+\frac{m_{1}}{m_{2}})\int_{x_{i}}^{x_{f}}Fdx_{0} because \overrightarrow{v_{0}}=\overrightarrow{v},\left|\overrightarrow{v_{0}}\right|^{2}=(\frac{dx_{0}}{dt})^{2}
in Earth and an object case, let m_{1}=m, m_{2}=m_{e},x_{i}=x_{e} and F=G\frac{mm_{e}}{x_{0}^{2}}.
\Rightarrow\left.\frac{1}{2}mv^{2}\right|_{v=v_{i}}^{v=v_{f}}=\left.-G\frac{m(m+m_{e})}{x_{0}}\right|_{x_{0}=x_{i}}^{x_{0}=x_{f}}
Escape Velocity = v_{i} when v_{f}=0 and x_{f}\rightarrow\infty.
\Rightarrow-\frac{1}{2}mv_{i}^{2}=G\frac{m(m+m_{e})}{x_{e}}
\Rightarrow\frac{1}{2}mv_{i}^{2}=-G\frac{m(m+m_{e})}{x_{e}}
\Rightarrow v_{initial}=i\left(G\frac{m+m_{e}}{x_{e}}\right)^{\frac{1}{2}}
\RightarrowI don't understand how much speed is this.
Its not just escape velocity, if we don't include imaginery number domian in speed then it implies that if v(x_{f})>v(x_{i}) then x_{f}>x_{i} which is also incorrect.
so question is, can speed be a imaginary number ? How do i give imaginary escape speed to an object?
m_{1}\frac{d^{2}}{dt^{2}}\overrightarrow{x_{1}}=\overrightarrow{F}
\Rightarrow m_{1}\frac{d^{2}}{dt^{2}}(\overrightarrow{x_{2}}-\overrightarrow{x_{0}})=\overrightarrow{F} because its assumed that \overrightarrow{x_{1}}-\overrightarrow{x_{2}}=\overrightarrow{x_{0}}
\Rightarrow-\overrightarrow{F}\frac{m_{1}}{m_{2}}+m_{1}\frac{d^{2}}{dt^{2}}\overrightarrow{x_{0}}=\overrightarrow{F} because m_{2}\frac{d^{2}}{dt^{2}}\overrightarrow{x_{2}}=-\overrightarrow{F}
\Rightarrow m_{1}\frac{d^{2}}{dt^{2}}\overrightarrow{x_{0}}=\overrightarrow{F}(1+\frac{m_{1}}{m_{2}})
\Rightarrow\left(m_{1}\frac{d^{2}}{dt^{2}}x_{0}\right)\hat{x_{0}}=\overrightarrow{F}(1+\frac{m_{1}}{m_{2}}) because its assumed that \frac{d\hat{x_{0}}}{dt}=0
\Rightarrow m_{1}\frac{d^{2}}{dt^{2}}x_{0}=F(1+\frac{m_{1}}{m_{2}}) because \overrightarrow{x_{1}}-\overrightarrow{x_{2}}=\overrightarrow{x_{0}}\Leftrightarrow\hat{x_{0}}=\hat{F}, F = Gravitational Force
\Rightarrow m_{1}\int_{x_{i}}^{x_{f}}\frac{d^{2}}{dt^{2}}x_{0}dx_{0}=(1+\frac{m_{1}}{m_{2}})\int_{x_{i}}^{x_{f}}Fdx_{0} because normally we have F as F(x_{0}).
\Rightarrow\left.\frac{1}{2}m_{1}v^{2}\right|_{v=v_{i}}^{v=v_{f}}=(1+\frac{m_{1}}{m_{2}})\int_{x_{i}}^{x_{f}}Fdx_{0} because \overrightarrow{v_{0}}=\overrightarrow{v},\left|\overrightarrow{v_{0}}\right|^{2}=(\frac{dx_{0}}{dt})^{2}
in Earth and an object case, let m_{1}=m, m_{2}=m_{e},x_{i}=x_{e} and F=G\frac{mm_{e}}{x_{0}^{2}}.
\Rightarrow\left.\frac{1}{2}mv^{2}\right|_{v=v_{i}}^{v=v_{f}}=\left.-G\frac{m(m+m_{e})}{x_{0}}\right|_{x_{0}=x_{i}}^{x_{0}=x_{f}}
Escape Velocity = v_{i} when v_{f}=0 and x_{f}\rightarrow\infty.
\Rightarrow-\frac{1}{2}mv_{i}^{2}=G\frac{m(m+m_{e})}{x_{e}}
\Rightarrow\frac{1}{2}mv_{i}^{2}=-G\frac{m(m+m_{e})}{x_{e}}
\Rightarrow v_{initial}=i\left(G\frac{m+m_{e}}{x_{e}}\right)^{\frac{1}{2}}
\RightarrowI don't understand how much speed is this.
Its not just escape velocity, if we don't include imaginery number domian in speed then it implies that if v(x_{f})>v(x_{i}) then x_{f}>x_{i} which is also incorrect.
so question is, can speed be a imaginary number ? How do i give imaginary escape speed to an object?