Can the equation x! + (x-3)! = 16x - 24 be solved for x?

  • Thread starter Thread starter Alesak
  • Start date Start date
  • Tags Tags
    Factorials
Alesak
Messages
111
Reaction score
0
hello everyone,
I usually post my questions on one small czech mathematical forum, but here is an equation no one knows how to "solve". I`ve came to it by accident, when I made an mistake in one combinatorics equation.


x! + (x-3)! = 16x - 24

its fairly simple to solve in one way(x has to be greater than 2, and from some point left side is greater than right side, because (x-3)! is always greater then 0 and we don`t have to care about -24 on the right side, so we can check for which x is x! > 16x. this leaves us only very few possibilities for x to check).

this is nice, but I`d like to know if its possible to get it in form x = something. I can`t think of any way how to do it.

also, this equation doesn`t have any solution, its rather theoretical question.
 
Mathematics news on Phys.org
If x can be a real number (using Gamma function) you can find 4 solutions betweeen 1 and 4.5 (by plotting method or std numeric method).
x1=1.1837
x2=1.3134
x3=2.1222
x4=4.4099
There are also 5 negative solution... None is integer.
 
It is simple to check that there is no integer solution. Factorials increase far more rapidly than a linear function, more rapidly than exponentials even. We know x>2. For x=4, the LHS is smaller than the RHS, for x=5 it is larger, thus there is no integer x where they are equal.
 
I have also tried this in several different ways, I got:

x! = ( 8x (x-2) (x-1) (x-1.5) )/( x (x-1) ( x-2) +1 )

which means no integer values...

Is this really all?
 
Plotting the function (remebering x!=Gamma(x+1))
G(x)=Gamma(x + 1) + Gamma(x - 2) - 16x + 24
you can see that for x>0 there are only four zeros.
For x<0 there are infinite solutions near 0,-1,-2,-3...none exacly integer.
There Gamma function is singular (has a pole) and change sign.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
977
Replies
8
Views
3K
Replies
3
Views
3K
Replies
4
Views
2K
Replies
3
Views
2K
Replies
11
Views
3K
Replies
7
Views
22K
Back
Top